Why is a cell therapy that restores sight to the blind against the law?

FDA

A lot of people are frustrated with the US Food and Drug Administration (FDA) and its woefully slow process for approving stem cell therapies. That’s one of the reasons why we started the CIRM Stem Cell Champions campaign, to gather as many like-minded supporters of stem cell research as possible and help to change the way the FDA works, to create a more efficient approval process.

You can read more about that campaign and watch a short video on what being a Stem Cell Champion involves (hint: not very much).

Now Randy Mills, our President and CEO, has teamed up with former US Senator Bill Frist to explain precisely why the FDA needs to change the way it regulates stem cells, and to offer a simple way to create the system that will best serve the needs of patients.

This Op Ed appeared on Fox News’ online Opinion section on Friday, May 20th.


Cell therapy reversed blindness for 47,000 patients in 2015. So why is it against the law?

By C. Randal Mills Ph.D., Sen. Bill Frist M.D.

As medical miracles go, restoring sight to the blind is right up there. A mother seeing her baby for the first time, or a child being able to count the stars is a beautiful gift, and its value cannot be overstated. Last year 47,000 Americans received that gift and had their blindness reversed through the transplantation of cells from a corneal donor’s final selfless act.

It is safe, it is effective, and because it is curative, it is a relatively cost effective procedure. It is medicine at its most beautiful. And according to FDA regulations, the distribution of this cell therapy is in violation of federal law.

That’s right. The regulation says that no matter how competent the surgeon, the FDA must first approve cells from donated corneas as if they were a drug—a process that takes over a decade and can costs billions of dollars — all for a practice that has been successfully restoring sight for more than 50 years. And this is only one example.

The good news: the FDA doesn’t always adhere to its regulations and has not in this case.

The bad news: inconsistent enforcement creates uncertainty, deterring innovation for other unmet medical needs such as arthritis, back pain, and diabetic ulcers.

How did a country known for pioneering medical breakthroughs get here?

Appropriate regulation of living cells that treat disease is inherently complex. Some therapies, like corneal cell transplants, are well-understood. Others are far more sophisticated and can involve forcing cells to change from one type to another, cutting out defective genes, and growing cells in culture to expand their numbers into the billions. Although this may sound like science fiction, it’s the type of very real science that will revolutionize the practice of medicine. And it is a challenging spectrum to regulate.

Unfortunately, what we have today amounts to a regulatory light switch for cell therapy; one that is either OFF or ON. For some cell therapies there is essentially no pre-market regulation. But at some point of added complexity, often arbitrarily decided by the FDA, the switch flips to ON and the cell becomes a drug in the minds of the Agency. And the consequences could not be more profound.

A product can be introduced through the OFF pathway in days with no FDA review and at very little cost. The ON pathway on the other hand, takes 10-20 years and can cost over a billion dollars. For cell therapy, there is no in between.

It is not possible to regulate the continuum of cell therapies fairly and effectively by using this binary approach. The system is broken and is impeding the hunt for safe and effective treatments for suffering patients.

Why? Because sensible people don’t invest significant capital gambling that the FDA will give them a pass out of its rules. They evaluate the time and cost of development assuming they will be forced down the ON pathway. They also assume that this arbitrary approach to regulation will (and often does) work against them by allowing a competitor to enter the market through the OFF pathway, placing them at a prohibitive disadvantage. The results speak for themselves. After 15 years under this paradigm we have had only a few cell therapies approved, all commercial disasters.

This is because the ON-OFF approach fails to adequately account for the difference in cell therapy complexity. To better understand, imagine this methodology applied to the regulation of automobiles. The government might permit low tech cars, say the Model T, to be sold without pre-market regulation. But if a manufacturer wanted to improve the vehicle by adding air conditioning, a radio or other such feature, the car would be subject to massive pre-market regulation. And not just on the new feature. Instead, the addition of the new feature would trigger a bumper-to-bumper evaluation of the entire car, increasing its development cost from basically nothing to that of a Lamborghini. The result would be streets full of hot, radio-less go-karts, except for a few ultra-high-end sports cars whose manufacturers are now defunct because they were never able to recoup the disproportionate costs of satisfying the regulatory system. This is what we see with cell therapies today: progress that is sluggish at best.

How can we move forward?

Ironically, the FDA identified a solution to the problem. In order to account for the broad spectrum inherent to cell therapy, in the late 90’s the FDA proposed a progressive, risk-based approach. The higher the risk, the greater the regulation. This guards against under regulation that might put patients at risk and prevents overregulation that can disincentivize the development of new or improved products.

In the FDA’s own words, the regulation they proposed would abide by a few basic principles:

  • “Under this tiered, risk-based approach, we propose to exert only the type of government regulation necessary to protect the public health.”
  • “The regulation of different types of human cells… will be commensurate with the public health risks…”
  • “These planned improvements will increase the safety of human cells… while encouraging the development of new products.”

It was a remarkably common sense approach that would have balanced safety with the need for innovation over an exceptionally broad range of technological complexity and risk.

It would have.

Unfortunately, the regulatory framework that was promised was never delivered, and it is time to resuscitate it. The burden placed on the development of cell therapies must accurately reflect the risks; must be balanced against the very real consequences of doing nothing (patients continuing to suffer); and must be consistently and fairly applied. In short, the FDA had it right and we need to give them the tools to deliver the regulatory paradigm they originally envisioned.

If we fix this highly fixable problem, we can create a system that will drive new innovations and better outcomes. Europe and Japan have already acted and are seeing the benefits. People with great ideas are coming off the bench, and game changing therapies are entering practice. While challenging the status quo does not sit well with some, particularly those who stand to prosper from the built-in barriers to entry the current structure provides, in the United States we have a responsibility to do better for patients and fix this broken system.

Randal Mills, Ph.D., is the President and CEO of the California Institute for Regenerative Medicine

William “Bill” H. Frist, M.D. is a nationally-acclaimed heart and lung transplant surgeon, former U.S. Senate Majority Leader, and chairman of the Executive Board of the health service private equity firm Cressey & Company.

What’s the big idea? Or in this case, what’s the 19 big ideas?

supermarket magazineHave you ever stood in line in a supermarket checkout line and browsed through the magazines stacked conveniently at eye level? (of course you have, we all have). They are always filled with attention-grabbing headlines like “5 Ways to a Slimmer You by Christmas” or “Ten Tips for Rock Hard Abs” (that one doesn’t work by the way).

So with those headlines in mind I was tempted to headline our latest Board meeting as: “19 Big Stem Cell Ideas That Could Change Your Life!”. And in truth, some of them might.

The Board voted to invest more than $4 million in funding for 19 big ideas as part of CIRM’s Discovery Inception program. The goal of Inception is to provide seed funding for great, early-stage ideas that may impact the field of human stem cell research but need a little support to test if they work. If they do work out, the money will also enable the researchers to gather the data they’ll need to apply for larger funding opportunities, from CIRM and other institutions, in the future

The applicants were told they didn’t have to have any data to support their belief that the idea would work, but they did have to have a strong scientific rational for why it might

As our President and CEO Randy Mills said in a news release, this is a program that encourages innovative ideas.

Randy Mills, Stem Cell Agency President & CEO

Randy Mills, CIRM President & CEO

“This is a program supporting early stage ideas that have the potential to be ground breaking. We asked scientists to pitch us their best new ideas, things they want to test but that are hard to get funding for. We know not all of these will pan out, but those that do succeed have the potential to advance our understanding of stem cells and hopefully lead to treatments in the future.”

So what are some of these “big” ideas? (Here’s where you can find the full list of those approved for funding and descriptions of what they involve). But here are some highlights.

Alysson Muotri at UC San Diego has identified some anti-retroviral drugs – already approved by the Food and Drug Administration (FDA) – that could help stop inflammation in the brain. This kind of inflammation is an important component in several diseases such as Alzheimer’s, autism, Parkinson’s, Lupus and Multiple Sclerosis. Alysson wants to find out why and how these drugs helps reduce inflammation and how it works. If he is successful it is possible that patients suffering from brain inflammation could immediately benefit from some already available anti-retroviral drugs.

Stanley Carmichael at UC Los Angeles wants to use induced pluripotent stem (iPS) cells – these are adult cells that have been genetically re-programmed so they are capable of becoming any cell in the body – to see if they can help repair the damage caused by a stroke. With stroke the leading cause of adult disability in the US, there is clearly a big need for this kind of big idea.

Holger Willenbring at UC San Francisco wants to use stem cells to create a kind of mini liver, one that can help patients whose own liver is being destroyed by disease. The mini livers could, theoretically, help stabilize a person’s own liver function until a transplant donor becomes available or even help them avoid the need for liver transplantation in the first place. Considering that every year, one in five patients on the US transplant waiting list will die or become too sick for transplantation, this kind of research could have enormous life-saving implications.

We know not all of these ideas will work out. But all of them will help deepen our understanding of how stem cells work and what they can, and can’t, do. Even the best ideas start out small. Our funding gives them a chance to become something truly big.


Related Links:

Rare disease underdogs come out on top at CIRM Board meeting

 

It seems like an oxymoron but one in ten Americans has a rare disease. With more than 7,000 known rare diseases it’s easy to see how each one could affect thousands of individuals and still be considered a rare or orphan condition.

Only 5% of rare diseases have FDA approved therapies

rare disease

(Source: Sermo)

People with rare diseases, and their families, consider themselves the underdogs of the medical world because they often have difficulty getting a proper diagnosis (most physicians have never come across many of these diseases and so don’t know how to identify them), and even when they do get a diagnosis they have limited treatment options, and those options they do have are often very expensive.  It’s no wonder these patients and their families feel isolated and alone.

Rare diseases affect more people than HIV and Cancer combined

Hopefully some will feel less isolated after yesterday’s CIRM Board meeting when several rare diseases were among the big winners, getting funding to tackle conditions such as ALS or Lou Gehrig’s disease, Severe Combined Immunodeficiency or SCID, Canavan disease, Tay-Sachs and Sandhoff disease. These all won awards under our Translation Research Program except for the SCID program which is a pre-clinical stage project.

As CIRM Board Chair Jonathan Thomas said in our news release, these awards have one purpose:

“The goal of our Translation program is to support the most promising stem cell-based projects and to help them accelerate that research out of the lab and into the real world, such as a clinical trial where they can be tested in people. The projects that our Board approved today are a great example of work that takes innovative approaches to developing new therapies for a wide variety of diseases.”

These awards are all for early-stage research projects, ones we hope will be successful and eventually move into clinical trials. One project approved yesterday is already in a clinical trial. Capricor Therapeutics was awarded $3.4 million to complete a combined Phase 1/2 clinical trial treating heart failure associated with Duchenne muscular dystrophy with its cardiosphere stem cell technology.  This same Capricor technology is being used in an ongoing CIRM-funded trial which aims to heal the scarring that occurs after a heart attack.

Duchenne muscular dystrophy (DMD) is a genetic disorder that is marked by progressive muscle degeneration and weakness. The symptoms usually start in early childhood, between ages 3 and 5, and the vast majority of cases are in boys. As the disease progresses it leads to heart failure, which typically leads to death before age 40.

The Capricor clinical trial hopes to treat that aspect of DMD, one that currently has no effective treatment.

As our President and CEO Randy Mills said in our news release:

Randy Mills, Stem Cell Agency President & CEO

Randy Mills, Stem Cell Agency President & CEO

“There can be nothing worse than for a parent to watch their child slowly lose a fight against a deadly disease. Many of the programs we are funding today are focused on helping find treatments for diseases that affect children, often in infancy. Because many of these diseases are rare there are limited treatment options for them, which makes it all the more important for CIRM to focus on targeting these unmet medical needs.”

Speaking on Rare Disease Day (you can read our blog about that here) Massachusetts Senator Karen Spilka said that “Rare diseases impact over 30 Million patients and caregivers in the United States alone.”

Hopefully the steps that the CIRM Board took yesterday will ultimately help ease the struggles of some of those families.

New stem cell approach targeting deadly blood cancers

shutterstock_379252642

Every four minutes someone in the US is diagnosed with a blood cancer. It might be lymphoma or leukemia, myeloma or myelodysplastic syndromes (MDS). While we have made great strides in treating some of these over the years, we still have a long way to go. Need proof? Well, every nine minutes someone in the US dies from a blood cancer.

Because of that need, the CIRM Board last week approved $3.5 million to help fund the search for a more effective, more efficient way to treat people suffering from blood cancer.

The Board funded a program by Angiocrine Biosciences, a San Diego-based company that is developing a new method for transplanting cord blood into patients.

Now cord blood transplants have been around for decades and they can be very effective. But they can also cause serious, even life-threatening complications. And they have limitations. For example some cord blood units are small and don’t have as many stem cells as the doctors would like. As a result, patients may need to spend longer in the hospital recovering from the procedure, putting them at increased risk of viral infections or pneumonia. Alternatively, doctors could use more than one cord blood unit for each transplant and while that seems to be an effective alternative, some studies suggest it can also carry an increased risk for serious complications such as Graft-versus-host disease (GVHD) where the newly transplanted cells attack the patient’s body.

To get around these issues, Angiocrine is developing a product called AB-110. This takes stem cells from cord blood, uses a specialized manufacturing facility to expand their numbers and then mixes them with genetically modified endothelial cells, the kind of cell that forms the lining of blood vessels.

It’s hoped that AB-110 will reduce the complications and increase the chances the transplanted cells will successfully engraft, meaning they start growing and creating new, healthy, blood cells.

In a news release CIRM’s President and CEO, C. Randal Mills, PhD, says this program fits in perfectly with our mission of accelerating stem cell treatments to patients with unmet medical needs:

“This project aims to do precisely that, speeding up the body’s ability to create new white blood cells and platelets – both essential qualities when treating deadly diseases like leukemia and lymphoma. Under CIRM 2.0, we are trying to create a pipeline of products that move out of the lab and into clinical trials in people, and we’re hopeful this program will demonstrate it’s potential and get approval from the Food and Drug Administration (FDA) to begin a clinical trial.”

Everyone at Angiocrine and CIRM will work as hard as we can to move this research toward a clinical trial as fast as we can. But in the meantime there are tens of thousands of critically ill people in desperate need of a life-saving transplant.

One way of helping those in need is for new parents to donate their child’s umbilical cord blood to the state’s umbilical cord blood collection program. This is a safe procedure that doesn’t harm the baby but could save someone’s life.

The cord blood program is housed at the UC Davis Institute for Regenerative Cures – a facility CIRM helped build and where we fund many great projects. This program is particularly important because it collects and stores cord blood units that reflect the state’s diverse communities, and that are available to all those in need of a transplant.

The bank also is a rich source of cord blood units for research, particularly for stem cell research, which will hopefully lead to even more effective therapies in the future.

If you want to accelerate stem cell therapies then create an Accelerating Center

Buckle up

Buckle up, we’re about to Accelerate

“You can’t teach fish to fly,” is one of the phrases that our CIRM President & CEO, Randy Mills, likes to throw out when asked why we needed to create new centers to help researchers move their most promising therapies out of the lab and into clinical trials.

His point is that many researchers are terrific at research but not so great at the form filling and other process-oriented skills needed to get approval from the Food and Drug Administration (FDA) for a clinical trial.

So instead of asking them to learn how to do all those things, why don’t we, CIRM, create a system that will do it for them? And that’s where we came up with the idea for the Accelerating Center (we’re also creating a Translating Center – that’s a topic for a future blog but if you can’t wait to find out the juicy details you can find them here.)

The Accelerating Center will be a clinical research organization that provides regulatory, operational and other support services to researchers and companies hoping to get their stem cell therapies into a clinical trial. The goal is to match the scientific skills of researchers with the regulatory and procedural skills of the Accelerating Center to move these projects through the review process as quickly as possible.

But it doesn’t end there. Once a project has been given the green light by the FDA, the Accelerating Center will help with actually setting up and running their clinical trial, and helping them with data management to ensure they get high quality data from the trial. Again these skills are essential to run a good clinical trial but things researchers may not have learned about when getting a PhD.

We just issued what we call an RFA (Request for Applications)  for people interested in partnering with us to help create the Accelerating Center. To kick-start the process we are awarding up to $15 million for five years to create the Center, which will be based in California.

To begin with, the Accelerating Center will focus on supporting CIRM-funded stem cell projects. But the goal is to eventually extend that support to other stem cell programs.

Now, to be honest, there’s an element of self-interest in all this. We have a goal under our new Strategic Plan of funding 50 new clinical trials over the next five years. Right now, getting a stem cell-related project approved is a slow and challenging process. We think the Accelerating Center is one tool to help us change that and give the most promising projects the support they need to get out of the lab and into people.

There’s a lot more we want to do to help speed up the approval process as well, including working with the FDA to create a new, streamlined regulatory process, one that is faster and easier to navigate. But that may take some time. So in the meantime, the Accelerating Center will help “fish” to do what they do best, swim, and we’ll take care of the flying for them.

 

 

 

Training the Next Generation of Stem Cell Scientists

Nobel prize winners don’t come out of thin air, they were all young, impressionable kids at one point in time.  If you ask any award-winning scientists how they got into science research, many of them would likely tell you about an inspiring teacher, an encouraging parent, or a hands-on research opportunity that inspired or helped them to pursue a scientific career.

Not every student is lucky enough to have one of these experiences, and many students, especially those from low income families, might never be exposed to good science or have the opportunity to pursue a career as a scientist.

CIRM is changing this for students in California by committing a significant portion of its funds to educating and training future stem cells scientists.

Yesterday, the Board approved over $42 million to fund two of CIRM’s educational programs, the Bridges to Stem Cell Research and Therapy Awards (Bridges) and the Summer Program to Accelerate Regenerative Medicine Knowledge (SPARK).

Bridging the Stem Cell Gap

The Bridges program supports undergraduate and master’s level students by providing paid research internships at California universities or colleges that don’t have a major stem cell research program. This program has evolved over the past seven years since it began, and now includes training and education courses in stem cell research, and direct patient engagement and outreach activities within California’s diverse communities.

CIRM’s president, Randy Mills explained in a press release:

Randy Mills, Stem Cell Agency President & CEO

Randy Mills, CIRM President & CEO

“The goal of the Bridges program is to prepare undergraduate and Master’s level students in California for a successful career in stem cell research. That’s not just a matter of giving them money, but also of giving them good mentors who can help train and guide them, of giving them meaningful engagement with patients and patient advocates, so they have a clear vision of the impact the work they are doing can have on people’s lives.”

Chairman of the CIRM Board, Jonathan Thomas, added:

Jonathan Thomas

Jonathan Thomas, Chairman of the CIRM Board

“The Bridges program has been incredibly effective in giving young people, often from disadvantaged backgrounds, a shot at a career in science. Of the 700 students who have completed the program, 95 percent are either working in a lab, enrolled in school or applying to graduate school. Without the Bridges program this kind of career might have been out of reach for many of these students.”

The CIRM Board voted to approve $40.13 million for the Bridges program, which will fund 14 programs at California state universities and city colleges. Each program will be able to support ten students for five years.

SPARKing Interest in Stem Cells

The SPARK program supports summer research internships for high school students that represent the diversity of the state’s population. It evolved from an earlier educational program called Creativity, and now emphasizes community outreach, direct patient engagement activities, and social media training along with training in stem cell research techniques.

“SPARK is all about helping cultivate high school students who are interested in science, and showing them it’s possible to have a career doing something they love,” said Randy Mills.

The Board approved $2.31 million for the SPARK program, which will provide California institutions funding support for five to ten students each year. Seven programs received funding including the Children’s Hospital Oakland Research Institute, UC San Francisco, UC Davis, Cedars-Sinai, City of Hope, USC and Stanford.

2015 Creativity Program students (now called SPARK).

2015 Creativity Program students (now called SPARK).

Training the Next Generation

For years, national leaders, including President Obama, have warned that without skilled, experienced researchers, the U.S. is in danger of losing its global competitiveness in science. But cuts in federal funding for research mean this is a particularly challenging time to begin a scientific career.

Our goal with the Bridges and SPARK programs is to address both these issues and support young scientists as they get the experience they need to launch their careers.


Related Links:

Board gives stem cell institute marching orders, and a road map

The poet T. S. Eliot once wrote: “If you aren’t in over your head, how do you know how tall you are?” Well, everyone at CIRM, California’s stem cell institute, is about to find out how tall we are.

Strategic Plan coverYesterday our governing Board approved a new Strategic Plan. To call it ambitious might be considered an understatement. Among the goals it commits us to achieving are:

  • Funding 50 new clinical trials in 5 years including 10 for rare or orphan disorders and 5 in conditions affecting children
  • Fostering enactment of a new, more efficient federal regulatory approval process for stem cell treatments
  • Introducing 50 new therapeutic candidates or devices into the development pipeline
  • Reducing the time it takes to move a stem cell treatment from the earliest Discovery stage into a clinical trial by 50%
  • Increasing the number of projects moving to the next stage of development by 50%

No easy task

Each goal by itself might be considered challenging. Taken together they are likely to stretch us all. And yet that’s why we joined CIRM, why we feel fortunate to be part of this mission. We have a chance to be part of a movement that could change the face of medicine as we know it. We knew it wouldn’t be easy. But now we know what we have to do to help achieve that.

As Randy Mills, our President and CEO, said in a news release, the goal in developing this Strategic Plan was to create a clear vision for the next five years of the Institute:

”We have around $900 million left to work with and we wanted a plan that used that money to the best possible effect, maximizing our chances of pushing as many new treatments to patients as possible. We didn’t want something ‘good enough’, we wanted something ‘great’. This plan is extremely ambitious, but also realistic in the goals it sets out and the way those goals can be met.”

The Strategic Plan – you can read it in full here – doesn’t just lay out goals, it also creates a road map on how to meet those goals. They include engaging industry more, being more creative in how we move the most promising projects from one stage of research to the next, and finding ways to change the regulatory approval process to help remove obstacles and speed up the progress of these therapies into clinical trials.

Aiming high

We know we may not achieve all our goals. As Randy Mills said at our Board meeting: “This is a difficult plan. These goals are not easy to achieve.” There are always risks in pursuing something so big and ambitious but no one ever achieved anything truly worthwhile by playing it safe. We are not interested in playing it safe.

We may start out by being, as T. S. Eliot put it “in over our heads”. But we’re confident we’ll be able to grow tall enough to make this plan work.

As Randy Mills told the Board: “If we are all in this together then the probability of success is high, and if we are successful then all this would have been worthwhile.”

Doing nothing is not OK: A call for change at the FDA

FDA-NotApprovedStampThe US Food and Drug Administration (FDA) is caught between a rock and a hard place. And CIRM is going to try and help them get out from under that.

As things stand today, if the FDA approves a therapy quickly and a patient later dies from it, then they are widely criticized. If they take a long time to approve a therapy and people die waiting for that treatment, then they are just as widely criticized.

So maybe it’s time to help them change that, by creating a new pathway that allows for a faster, more efficient, but equally safe, process of approving stem cell therapies.

This was a topic that CIRM’s President and CEO, Dr. Randy Mills, took on at last week’s World Stem Cell Summit. He highlighted our mission – accelerating stem cell therapies to patients with unmet medical needs – as the driving force behind everything we do, including regulatory reform:

“We have had the current FDA regulatory structure for cell therapy in place for 15 years, and in that 15 years not one stem cell therapy has been approved. The scoreboard is not lying, there’s a zero on it. Not one therapy has been approved. There is an issue here, we can’t ignore that fact and so we made it part of our proposed new Strategic Plan to try and remove this burden.

“There is an excessively long translational pathway to get an Investigational New Drug (IND) approval from the FDA (a necessary step to proceed with testing a therapy in a clinical trial). For non-cell therapies it takes 3-4 years to get an IND. For cell therapies it takes 6-8 years, twice as long.”

Mills says many potential therapies have been abandoned, or even stopped before they even got started, simply because the regulatory hurdles are so many and the costs so high.

“We are not anti-regulation, we are not anti-FDA, and we are not calling for the removal of rules and regulations around stem cell therapies, that would be bad for patients and research. These therapies have risks and we are not proposing any strategy that puts things on the market without any testing or safety data. But right now we are being so careful about safety to ensure patients are not put at risk while those same patients are dying from their disease.”

Chaohong Fan, MD, PhD, a Medical Officer at the FDA was in the audience and said the people at the FDA really want to help, that they feel it’s part of their mission.

Mills said he had no doubts that the people at the FDA are committed and passionate about what they do. He says it’s not that people at the FDA aren’t working, it’s that the process isn’t working, and needs to be transformed.

“At CIRM we are saying doing nothing is not OK. It’s not OK. So we are going to be working with patients and patient advocates, companies, researchers and the FDA to make change, to make it easier for patients to get access to the therapies they need.”

 

Stem cell stories that caught our eye: mini-brains in a dish, blood stem cells and state funded stem cell research

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Great review of brains in a dish. The veteran Associated Press science journalist Malcolm Ritter produced the most thorough overview I have seen of the recent spate of research projects that have grown “mini-brains” in lab dishes. He provides the perspective from the first report in 2013 to a recent, and as he noted, unconfirmed claim of a more complex ball of brain cells.

Alysson Muotri

Alysson Muotri

He uses CIRM grantee Alysson Muotri to discuss the value of modeling diseases with these pea-sized brains. In the case of this University of California, San Diego researcher that involves finding out how nerves in people with autism are different from those in other people. But Ritter does not leave the false impression that these very rudimentary clumps of cells—that each self-organize in slightly different ways—are functioning brains. He makes this point with great quote from Madeline Lancaster of the Medical Research Council in England:

“Lancaster compares the patchwork layout to an airplane that has one wing on top, a propeller at the back, the cockpit on the bottom and a wheel hanging off the side. ‘It can’t actually fly,’ she said. But ‘you can study each of the components individually and learn a lot about them.’”

Ritter also discusses the broader trend of creating various miniature “organoids” in the lab including a quote from CIRM grantee at the University of California, San Francisco, Arnold Kriegstein:

This overall approach “is a major change in the paradigm in terms of doing research with human tissues rather than animal tissues that are substitutes. … It’s truly spectacular.” Organoids “are poised to make a major impact on the understanding of disease, and also human development.”

Unfortunately, this AP piece did not get as broad a pick up as the wire service often achieves. But here is the version from the Seattle Times.

Throw out the textbook on blood stem cells. A new study suggests that the textbook roadmap showing blood stem cells slowly going down various paths to eventually produce specific adult blood cells may be like a faulty GPS system. In this case that voice saying “redirect” is the renown stem cell scientist John Dick of the University of Toronto.

plateletsDick’s research team showed that very early in the process the daughter cell of the stem cell is already committed to a specific adult cell, for instance a red blood cell or a platelet needed for clotting. Low cell counts for one of those cell is the most common cause for patients needing transfusions. Now, with these cell-specific progenitor cells discovered, it may be easier to generate those adult cells for therapy. The discovery will also help the research community better understand many blood disorders.

“Our discovery means we will be able to understand far better a wide variety of human blood disorders and diseases – from anemia, where there are not enough blood cells, to leukemia, where there are too many blood cells,” said Dick in a press release from the University affiliated Princess Margaret Cancer Center. “Think of it as moving from the old world of black-and-white television into the new world of high definition.”

The journal Science published the study today.

The power of states to fund stem cells. The Daily Beast published a good review of state efforts to fund stem cell research with the slightly mischievous title, “George W., Father of Stem-Cell Revolution.” It recounts how several states stepped into the breach after then President George W. Bush restricted stem cell research. The story originally ran in Kaiser Health News under a more subdued headline.

GWBush

The article states that today seven states offer some level of stem cell research funding. And the author asserts that as an engine for generating economic development and local scientific prestige “stem cell research for many states appears to be worth the investment.” We have to agree.

The story does retell some of the early criticisms of CIRM, but goes on to discuss some of our reforms and quotes our new president C. Randal Mills on the “systems-based agency” he is creating:

“We’re setting up continuous paths to move basic research to clinical trials. It’s like a train moving down a track, where each grant is the link to the next step down the line.”

The piece ends with a great forward-looking quote from Jakub Tolar, head of the University of Minnesota’s Stem Cell Institute:

“We started on drugs a hundred years ago. Then we went to monoclonal antibodies—biological. We are now getting ready to use cells as a third way of doing medicine. We are at a historical sweet spot.”

Improving process drives progress in stem cell research

shutterstock_212888935Process is not a sexy word. No one gets excited thinking about improving a process. Yet behind every great idea, behind every truly effective program is someone who figured out a way to improve the process, to make that idea not just work, but work better.

It’s not glamorous. Sometimes it’s not even pretty. But it is essential.

Yesterday in Oakland our governing Board approved two new concepts to improve our process, to help us fund research in a way that is faster, smarter and ultimately helps us better meet our mission of accelerating the development of stem cell therapies for patients with unmet medical needs.

The new concepts are for Discovery – the earliest stage of research – and the Translational phase, a critical step in moving promising therapies out of the lab and toward clinical trials where they can be tested in people.

In a news release C. Randal Mills, Ph.D., CIRM’s President and CEO, said that these additions built on the work started when the agency launched CIRM 2.0 in January for the clinical phase of research:

“What makes this approach different is that under CIRM 2.0 we are creating a pathway for research, from Discovery to Translational and Clinical, so that if a scientist is successful with their research at one level they are able to move that ahead into the next phase. We are not interested in research just for its own sake. We are interested in research that is going to help us help patients.”

In the Discovery program, for example, we will now be able to offer financial incentives to encourage researchers who successfully complete their work to move it along into the Translational phase – either themselves or by finding a scientific partner willing to take it up and move it forward.

This does a number of things. First it helps create a pipeline for the most promising projects so ideas that in the past might have stopped once the initial study ended now have a chance to move forward. Obviously our hope is that this forward movement will ultimately lead to a clinical trial. That won’t happen with every research program we fund but this approach will certainly increase the possibility that it might.

There’s another advantage too. By scheduling the Discovery and Translational awards more regularly we are creating a grant system that has more predictability, making it easier for researchers to know when they can apply for funding.

We estimate that each year there will be up to 50 Discovery awards worth a total of $53 million; 12 Translation awards worth a total of $40 million; and 12 clinical awards worth around $100 million. That’s a total of more than $190 million every year for research.

This has an important advantage for the stem cell agency too. We have close to $1 billion left in the bank so we want to make sure we spend it as wisely as we can.

As Jonathan Thomas, Ph.D. J.D, the Chair of our Board, said, having this kind of plan helps us better plan our financial future;

“Knowing how often these programs are going to be offered, and how much money is likely to be awarded means the Board has more information to work with in making decisions on where best to allocate our funding.”

The Board also renewed funding for both the Bridges and SPARK (formerly Creativity) programs. These are educational and training programs aimed at developing the next generation of stem cell scientists. The Bridges students are undergraduate or Master’s level students. The SPARK students are all still in high school. Many in both groups come from poor or low-income communities. This program gives them a chance to work in a world-class stem cell research facility and to think about a career in science, something that for many might have been unthinkable without Bridges or SPARK.

Process isn’t pretty. But for the students who can now think about becoming a scientist, for the researchers who can plan new studies, and for the patients who can now envision a potential therapy getting into clinical trials, that process can make all the difference.