Brain’s Own Activity Can Fuel Growth of Deadly Brain Tumors, CIRM-Funded Study Finds

Not all brain tumors are created equal—some are far more deadly than others. Among the most deadly is a type of tumor called high-grade glioma or HGG. Most distressingly, HGG’s are the leading cause of brain tumor death in both children and adults. And despite extraordinary progress in cancer research as a whole, survival rates for those diagnosed with an HGG have yet to improve.

shutterstock_30402241

But recent research from Stanford University scientists could one day help move the needle—and give renewed hope to the patients and their families affected by this devastating disease.

The study, published today in the journal Cell, found that one key driver for HGG’s deadly diagnosis is that the tumor can be stimulated to grow by the brain’s own neural activity—specifically the nerve activity in the brain’s cerebral cortex.

Michelle Monje, senior author of the study that was funded in part by two grants from CIRM, was initially surprised by these results, as they run counter to how most types of tumors grow. As she explained in today’s press release:

“We don’t think about bile production promoting liver cancer growth, or breathing promoting the growth of lung cancer. But we’ve shown that brain function is driving these brain cancers.”
 


By analyzing tumor cells extracted from HGG patients, and engrafting it onto mouse models in the lab, the researchers were able to pinpoint how the brain’s own activity was driving tumor growth.

The culprit: a protein called neuroligin-3 that appeared to be calling the shots. There are four distinct types of HGGs that affect the brain in vastly different ways—and have vastly different molecular and genetic characteristics. Interestingly, says Monje, neuroligin-3 played the same role in all of them.

What was so disturbing to the research team, says Monje, is that neuroligin-3 is an essential protein for overall brain development. Specifically, it helps maintain healthy growth and repair of brain tissue over time. In order to grow, HGG tumors hijack this critical protein.

The research team came to this conclusion after a series of experiments that delved deep into the molecular mechanisms that guide both brain activity and brain tumor development. They first employed a technique called optogenetics, whereby scientists use genetic manipulation to insert light-sensitive proteins into the brain cells, or neurons, of interest. This allowed scientists to activate these neurons—or deactivate them—at the ‘flick of a switch.’

When applying this technique to the tumor-engrafted mouse models, the team could then see that tumors grew significantly better when the neurons were switched on. The next step was to narrow it down to why. Additional biochemical analyses and testing on the mouse models confirmed that neuroligin-3 was being hijacked by the tumor to spur growth.

And when they dug deeper into the connection between neuroligin-3 and cancer, they found something even more disturbing. A detailed look at the Cancer Genome Atlas (a large public database of the genetics of human cancers), they found that HGG patients with higher levels of neuroligin-3 in their brain had shorter survival rates than those with lower levels of the same protein.

These results, while highlighting the particularly nefarious nature of this class of brain tumors, also presents enormous opportunity for researchers. Specifically, Monje hopes her team and others can find a way to block or nullify the presence of neuroligin-3 in the regions surrounding the tumor, creating a kind of barrier that can keep the size of the tumor in check. 


Molecular Trick Diminishes Appearance of Scars, Stanford Study Finds

Every scar tells a story, but that story may soon be coming to a close, as new research from Stanford University reveals clues to why scars form—and offers clues on how scarring could become a thing of the past.

Reported last week in the journal Science, the research team pinpointed the type of skin cell responsible for scarring and, importantly, also identified a molecule that, when activated, can actually prevent the skin cells from forming a scar. As one of the study’s senior authors Michael Longaker explained in a press release, the biomedical burden of scarring is vast.

Scars, both internal and external, present a significant biomedical burden.

Scars, both internal and external, present a significant biomedical burden.

“About 80 million incisions a year in this country heal with a scar, and that’s just on the skin alone,” said Longaker, who also co-directs Stanford’s Institute for Stem Cell Biology and Regenerative Medicine. “Internal scarring is responsible for many medical conditions, including liver cirrhosis, pulmonary fibrosis, intestinal adhesions and even the damage left behind after a heart attack.”

Scars are normally formed when a type of skin cell called a fibroblast secretes a protein called collagen at the injury site. Collagen acts like a biological Band-Aid that supports and stabilizes the damaged skin.

In this study, which was funded in part by a grant from CIRM, Longaker, along with co-first authors Yuval Rinkevich and Graham Walmsley, as well as co-senior author and Institute Director Irving Weissman, focused their efforts on a type of fibroblast that appeared to play a role in the earliest stages of wound healing.

This type of fibroblast stands out because it secretes a particular protein called engrailed, which initial experiments revealed was responsible for laying down layers of collagen during healing. In laboratory experiments in mouse embryos, the researchers labeled these so-called ‘engrailed-positive fibroblast cells,’ or EPF cells, with a green fluorescent dye. This helped the team track how the cells behaved as the mouse embryo developed.

Interestingly, these cells were also engineered to self-destruct—activated with the application of diphtheria toxin—so the team could monitor what would happen in the absence of EPF cells entirely.

Their results revealed strong evidence that EPF cells were critical for scar formation. The scarring process was so tied to these EPF cells that when the team administered the toxin to shut them down, scarring reduced significantly.

Six days later the team found continued differences between mice with deactivated EPF cells, and a group of controls. Indeed, the experimental group had repaired skin that more closely resembled uninjured skin, rather than the distinctive scarring pattern that normally occurs.

Further examination of EPF cells’ precise function revealed a protein called CD26 and that blocking EPF’s production of CD26 had the same effect as shutting off EPF cells entirely. Wounds treated with a CD26 inhibitor had scars that covered only 5% of the original injury site, as opposed to 30%.

Pharmaceutical companies Merck and Novartis have already manufactured two types of CD26 inhibitor, originally developed to treat Type II diabetes, which could be modified to block CD26 production during wound healing—a prospect that the research team is examining more closely.

CIRM-Funded Scientists Build a Better Neuron; Gain New Insight into Motor Neuron Disease

Each individual muscle in our body—no matter how large or how small—is controlled by several types of motor neurons. Damage to one or more types of these neurons can give rise to some of the most devastating motor neuron diseases, many of which have no cure. But now, stem cell scientists at UCLA have manufactured a way to efficiently generate motor neuron subtypes from stem cells, thus providing an improved system with which to study these crucial cells.

“Motor neuron diseases are complex and have no cure; currently we can only provide limited treatments that help patients with some symptoms,” said senior author Bennett Novitch, in a news release. “The results from our study present an effective approach for generating specific motor neuron populations from embryonic stem cells to enhance our understanding of motor neuron development and disease.”

Normally, motor neurons work by transmitting signals between the brain and the body’s muscles. When that connection is severed, the individual loses the ability to control individual muscle movement. This is what happens in the case of amyotrophic lateral sclerosis, or ALS, also known as Lou Gehrig’s disease.

These images reveal the significance of the 'Foxp1 effect.' The Foxp1 transcription factor is crucial to the normal growth and function of motor neurons involved in limb-movement.

These images reveal the significance of the ‘Foxp1 effect.’ The Foxp1 transcription factor is crucial to the normal growth and function of motor neurons involved in limb-movement.

Recent efforts had focused on ways to use stem cell biology to grow motor neurons in the lab. However, such efforts to generate a specific type of motor neuron, called limb-innervating motor neurons, have not been successful. This motor-neuron subtype is particularly affected in ALS, as it supplies nerves to the arms and legs—the regions usually most affected by this deadly disease.

In this study, published this week in Nature Communications, Novitch and his team, including first author Katrina Adams, worked to develop a better method to produce limb-innervating motor neurons. Previous efforts had only had a success rate of about 3 percent. But Novitch and Adams were able to boost that number five-fold, to 20 percent.

Specifically, the UCLA team—using both mouse and human embryonic stem cells—used a technique called ‘transcriptional programming,’ in order to coax these stem cells into become fully functional, limb-innervating motor neurons.

In this approach, which was funded in part by a grant from CIRM, the team added a single transcription factor (a type of protein that regulates gene function), which would then guide the stem cell towards becoming the right type of motor neuron. Here, Novitch, Adams and the team used the Foxp1 transcription factor to do the job.

Normally, Foxp1 is found in healthy, functioning limb-innervating motor neurons. But in stem cell-derived motor neurons, Foxp1 was missing. So the team reasoned that Foxp1 might actually be the key factor to successfully growing these neurons.

Their initial tests of this theory, in which they inserted Foxp1 into a developing chicken spinal cord (a widely used model for neurological research), were far more successful. This result, which is not usually seen with most unmodified stem-cell-derived motor neurons, illustrates the important role played by Foxp1.

The most immediate implications of this research is that now scientists can now use this method to conduct more robust studies that enhance the understanding of how these cells work and, importantly, what happens when things go awry.

Gene Therapy Beats Half-Matched Stem Cell Transplant in Side-by-Side Comparison to Treat ‘Bubble Baby’ Disease

If you are born with Severe Combined Immunodeficiency (SCID), your childhood is anything but normal. You don’t get to play with other kids, or be held by your parents. You can’t even breathe the same air. And, without treatment, you probably won’t live past your first year.

The bubble boy.  Born in 1971 with SCID, David Vetter lived in a sterile bubble to avoid outside germs that could kill him. He died in 1984 at 12 due to complications from a bone marrow transplant. [Credit: Baylor College of Medicine Archives]

The bubble boy. Born in 1971 with SCID, David Vetter lived in a sterile bubble to avoid outside germs that could kill him. He died in 1984 at 12 due to complications from a bone marrow transplant. [Credit: Baylor College of Medicine Archives]

This is the reality of SCID, also called “Bubble Baby” disease, a term coined in the 1970s when the only way to manage the disease was isolating the child in a super clean environment to avoid exposure to germs. The only way to treat the disorder was with a fully matched stem cell transplant from a bone marrow donor, ideally from a sibling. But as you may have guessed, finding a match is extraordinarily rare. Until recently, the next best option was a ‘half-match’ transplant—usually from a parent. But now, scientists are exploring a third, potentially advantageous option: gene therapy. Late last year, we wrote about a promising clinical trial from UCLA researcher (and CIRM Grantee) Donald Kohn, whose team effectively ‘cured’ SCID in 18 children with the help of gene therapy. Experts still consider a fully matched stem cell transplant to be the gold standard of treatment for SCID. But are the second-tier contenders—gene therapy and half-matched transplant—both equally as effective? Until recently, no one had direct comparison. That all changes today, as scientists at the Necker Children’s Hospital in Paris compare in the journal Blood, for the first time, half-matched transplants and gene therapy—to see which approach comes out on top. The study’s lead author, Fabien Touzot, explained the importance of comparing these two methods:

“To ensure that we are providing the best alternative therapy possible, we wanted to compare outcomes among infants treated with gene therapy and infants receiving partial matched transplants.”

So the team monitored a group of 14 SCID children who had been treated with gene therapy, and compared them to another group of 13 who had received the half-matched transplant. And the differences were staggering. Children in the gene therapy group showed an immune system vastly improved compared to the half-matched transplant group. In fact, in the six months following treatment, T-cell counts (an indicator of overall immune system health) rose to almost normal levels in more than 75% of the gene therapy patients. In the transplant group, that number was just over 25%. The gene therapy patients also showed better resilience against infections and had far fewer infection-related hospitalizations—all indictors that gene therapy may in fact be superior to a half-matched transplant. This is encouraging news say researchers. Finding a fully matched stem cell donor is incredibly rare. Gene therapy could then give countless families of SCID patients hope that their children could lead comparatively normal, healthy lives. “Our analysis suggests that gene therapy can put these incredibly sick children on the road to defending themselves against infection faster than a half-matched transplant,” explained Touzot. “These results suggest that for patients without a fully matched stem cell donor, gene therapy is the next-best approach.” Hear more about how gene therapy could revolutionize treatment strategies for SCID in our recent interview with Donald Kohn:

Stem Cell Scientists Reconstruct Disease in a Dish; Gain Insight into Deadly Form of Bone Cancer

The life of someone with Li-Fraumeni Syndrome (LFS) is not a pleasant one. A rare genetic disorder that usually runs in families, this syndrome is characterized by heightened risk of developing cancer—multiple types of cancer—at a very young age.

People with LFS, as the syndrome is often called, are especially susceptible to osteosarcoma, a form of bone cancer that most often affects children. Despite numerous research advances, survival rates for this type of cancer have not improved in over 40 years.

shutterstock_142552177 But according to new research from Mount Sinai Hospital and School of Medicine, the prognosis for these patients may not be so dire in a few years.

Reporting today in the journal Cell, researchers describe how they used a revolutionary type of stem cell technology to recreate LFS in a dish and, in so doing, have uncovered the series of molecular triggers that cause people with LFS to have such high incidence of osteosarcoma.

The scientists, led by senior author Ihor Lemischka, utilized induced pluripotent stem cells, or iPSCs, to model LFS—and osteosarcoma—at the cellular level.

Discovered in 2006 by Japanese scientist Shinya Yamanaka, iPSC technology allows scientists to reprogram adult skin cells into embryonic-like stem cells, which can then be turned into virtually any cell in the body. In the case of a genetic disorder, such as LFS, scientists can transform skin cells from someone with the disorder into bone cells and grow them in the lab. These cells will then have the same genetic makeup as that of the original patient, thus creating a ‘disease in a dish.’ We have written often about these models being used for various diseases, particularly neurological ones, but not cancer.

“Our study is among the first to use induced pluripotent stem cells as the foundation of a model for cancer,” said lead author and Mount Sinai postdoctoral fellow Dung-Fang Lee in today’s press release.

The team’s research centered on the protein p53. P53 normally acts as a tumor suppressor, keeping cell divisions in check so as not to divide out of control and morph into early-stage tumors. Previous research had revealed that 70% of people with LFS have a specific mutation in the gene that encodes p53. Using this knowledge and with the help of the iPSC technology, the team shed much-needed light on a molecular link between LFS and bone cancer. According to Lee:

“This model, when combined with a rare genetic disease, revealed for the first time how a protein known to prevent tumor growth in most cases, p53, may instead drive bone cancer when genetic changes cause too much of it to be made in the wrong place.”

Specifically, the team discovered that the ultimate culprit of LFS bone cancer is an overactive p53 gene. Too much p53, it turns out, reduces the amount of another gene, called H19. This then leads to a decrease in the protein decorin. Decorin normally acts to help stem cells mature into healthy, bone-making cells, known as osteoblasts. Without it, the stem cells can’t mature. They instead divide over and over again, out of control, and ultimately cause the growth of dangerous tumors.

But those out of control cells can become a target for therapy, say researchers. In fact, the team found that artificially boosting H19 levels could have a positive effect.

“Our experiments showed that restoring H19 expression hindered by too much p53 restored “protective differentiation” of osteoblasts to counter events of tumor growth early on in bone cancer,” said Lemischka.

And, because mutations in p53 have been linked to other forms of bone cancer, the team is optimistic that these preliminary results will be able to guide treatment for bone cancer patients—whether they have LFS or not. Added Lemischka:

“The work has implications for the future treatment or prevention of LFS-associated osteosarcoma, and possibly for all forms of bone cancer driven by p53 mutations, with H19 and p53 established now as potential targets for future drugs.”

Learn more about how scientists are using stem cell technology to model disease in a dish in our special video series: Stem Cells In Your Face:

Cancer Cells Mimic Blood Vessels to Colonize the Body’s Farthest Reaches

Scientists at Cold Spring Harbor Laboratory have just uncovered the latest dirty trick in the cancer playbook—one that spurs the cancer cells to spread throughout the body and evade treatment. But importantly, they believe they may have found a way to counter it.

Reporting today in the journal Nature, Cold Spring Harbor researchers describe how tumor cells can form tubular networks that mimic blood vessels. It is this mimicry, the team argues, that plays a key role in helping the cancer spread throughout the body—and a significant hurdle to successfully treating the disease.

Two adjacent sections of a mouse breast tumor. Tissue at left is stained so that normal blood vessels can be seen (black arrow). Extending from these vessels are blood filled channels (green arrows). On the right, the tissue is stained for a fluorescent protein expressed by the tumor cells. Here, blood-filled channels are actually formed by tumor cells in a process known as vascular mimicry. [Credit: Hannon Lab, CSHL]

Two adjacent sections of a mouse breast tumor. Tissue at left is stained so that normal blood vessels can be seen (black arrow). Extending from these vessels are blood filled channels (green arrows). On the right, the tissue is stained for a fluorescent protein expressed by the tumor cells. Here, blood-filled channels are actually formed by tumor cells in a process known as vascular mimicry. [Credit: Hannon Lab, CSHL]

Using mouse models of breast cancer, the team—led by Simon Knott—identified this phenomenon, called ‘vascular mimicry,’ and revealed that two genes, called Serpine2 and Slpi, were driving it. Made up of tumor cells literally stacked together, these tubular networks allowed oxygen and other nutrients to reach far-flung tumor cells throughout the body. This kept the tumor cells healthy, and helped them spread.

In today’s press release, Knott explained his initial reactions to this critical discovery:

“It’s very neat to watch and see cells evolve to have these capacities, but on the other hand it’s really scary to think that these cells are sitting there in people doing this.”

In laboratory experiments, the team found that boosting levels of Serpin2 and Slpi boosted the cancer’s ability to build these networks. Conversely, shutting down these two genes appeared to do the opposite. Knott argues that targeting the proteins that these two genes produce, as a way of shutting them off, may be a winning strategy:

“Targeting them might provide therapeutic benefits,” said Knott, “but we’re not sure yet.”

Indeed, research efforts over the past decade or more have tried to curb the production of these tubular networks of tumor cells, but with limited success. These drugs, called angiogenesis inhibitors, may not have worked as well as originally hoped because the underlying mechanism that creates this vascular mimicry—namely the genes Serpin2 and Slpi—was not targeted. Postdoctoral researcher Elvin Wagenblast, the paper’s first author, thinks they might have more success now:

“Maybe by targeting angiogenesis and also vascular mimicry at the same time we might actually have a better benefit in the clinic in the long run.”

This strategy is ultimately the goal of the team, but much work remains. Their most immediate next steps are to understand the process by which tumor cells pass through these tubular networks and infiltrate new areas of the body. But armed with this new-found knowledge of vascular mimicry, these and other researchers may be well on their way to outsmarting cancer, at least some of the time.

Breast Cancer Tumors Recruit Immune Cells to the Dark Side

We rely on our immune system to stave off all classes of disease—but what happens when the very system responsible for keeping us healthy turns to the dark side? In new research published today, scientists uncover new evidence that reveals how breast cancer tumors can actually recruit immune cells to spur the spread of disease.

Some forms of breast cancer tumors can actually turn the body's own immune system against itself.

Some forms of breast cancer tumors can actually turn the body’s own immune system against itself.

Breast cancer is one of the most common cancers, and if caught early, is highly treatable. In fact, the majority of deaths from breast cancer occur because the disease has been caught too late, having already spread to other parts of the body, a process called ‘metastasis.’ Recently, scientists discovered that women who have a heightened number of a particular type of immune cells, called ‘neutrophils,’ in their blood stream have a higher chance of their breast cancer metastasizing to other tissues. But they couldn’t figure out why.

Enter Karin de Visser, and her team at the Netherlands Cancer Institute, who announce today in the journal Nature the precise link between neutrophil immune cells and breast cancer metastasis.

They found that some types of breast tumors are particularly nefarious, sending out signals to the person’s immune system to speed up their production of neutrophils. And then they instruct these newly activated neutrophils to go rogue.

Rather than attack the tumor, these neutrophils turn on the immune system. They especially focus their efforts at blocking T cells—the type of immune cells whose job is normally to target and attack cancer cells. Further examination in mouse models of breast cancer revealed a particular protein, called interleukin 17 (or IL17) played a key role in this process. As Visser explained in today’s news release:

“We saw in our experiments that IL17 is crucial for the increased production of neutrophils. And not only that, it turns out that this is also the molecule that changes the behavior of the neutrophils, causing them to become T cell inhibitory.”

The solution then, was clear: block the connection, or pathway, between IL17 and neutrophils, and you can thwart the tumor’s efforts. And when Visser and her team, including first author and postdoctoral researcher Seth Coffelt, did this they saw a significant improvement. When the IL17-neutrophil pathway was blocked in the mouse models, the tumors failed to spread at the same rate.

“What’s notable is that blocking the IL17-neutrophil route prevented the development of metastases, but did not affect the primary tumor,” Visser added. “So this could be a promising strategy to prevent the tumor from spreading.”

The researchers are cautious about focusing their efforts on blocking neutrophils, however, as these cells are in and of themselves important to stave off infections. A breast cancer patient with neutrophil levels that were too low would be at risk for developing a whole host of infections from dangerous pathogens. As such, the research team argues that focusing on ways to block IL17 is the best option.

Just last month, the FDA approved an anti-IL17 based therapy to treat psoriasis. This therapy, or others like it, could be harnessed to treat aggressive breast cancers. Says Visser:

“It would be very interesting to investigate whether these already existing drugs are beneficial for breast cancer patients. It may be possible to turn these traitors of the immune system back towards the good side and prevent their ability to promote breast cancer metastasis.”

New understanding of the inner workings of our genetic tool kit should help us make smarter repairs

For young biology students the steps from genes to their function becomes a mantra: DNA makes RNA and RNA makes protein. But it is really not quite that simple. A few different types of RNA act along the path and we are now learning that the structure, or shape, of the individual RNA molecules affects their function.

Which genes succeed in producing their designated protein determines what the cell actually does—what kind of tissue it is and how well it performs the role it is assigned. Switching gene function on and off turns out to be quite complex with players among the molecules that are part of the backbone of DNA as well as the various forms of RNA. We have made great strides in the past decade in understanding the role of those DNA structural components, the so-called epigenetics, but still have major gaps in our understanding of the many roles of RNA.

DNA dogmaWith CIRM-funding, a team headed by Howard Chang at Stanford has gotten around a major hurdle in unlocking this complex issue. Like DNA, RNA is made up of various repeats of four molecules called bases. Prior to Chang’s work researchers could only track the structure of RNA associated with two of those bases. His team modified a commonly used bio-chemical tool called SHAPE to reveal the workings of all four RNA bases in living cells.

The team verified something that is increasingly being shown, static cells frozen in time a lab dish do not necessarily reflect what goes on in living cells. In this study those differences manifest in the structure of the RNA that determines what molecules are next to each other, which impacts their activity. After more than 2 billion measurements of more than 13,000 RNAs in the lab and in living cells, the team quantified those differences and showed how this molecular “folding” changes the function of the various RNAs.

They published the work, for which they used mouse embryonic stem cells, on-line today in Nature. In the closing paragraph of the journal article they speculate on the impact of the new ability to better understand the roles of RNA:

“In the future, viewing the RNA structurome when cells are exposed to different stimuli or genetic perturbations should revolutionize our understanding of gene regulation in biology and medicine.”

Since so many of the research projects that seek to reverse the course of disease try to change the genetic functioning of cells, this new understanding should be able to reduce the number of blind alleys scientist have to go down to get a desired result. It should allow the design of studies based on more logic and less chance, speeding the development of therapies.

Pathway discovered that could yield therapies to prevent hearts turning to “bone”

In the Rolling Stones’ lyrics having a “Heart of Stone” protected you from heartbreak. But over a million Americans are developing hearts of bone and it could kill them.

CIRM-funded researchers at the Gladstone Institutes think they have uncovered the path to this destructive hardening of the heart and that could lead to therapies to stop the damage. In particular, they looked at heart valves and why in some people the cells in those valves start acting like bone and produce calcium that causes them to get rigid and loose their proper function.

Valve cells come from a family of cells called endothelial cells that includes the lining of blood vessels, which are also prone to inappropriate production of calcium and hardening. So, the findings could have much broader implication for heart disease and therapy.

A mutation in the Notch1 gene makes cells react inappropriately to the sheer stress caused by blood flow. Team found BMP, SFB and MMP genes control this.

A mutation in the Notch1 gene makes cells react inappropriately to the sheer stress caused by blood flow. Team found BMP, SFB and MMP genes control this.

Led by senior author Deepak Srivastava, the team used stem cell technology to create endothelial cells from patients with genetic calcific aortic valve disease (CAVD) and from normal individuals. They then pushed those cells to mature into valve cells in the lab and monitored which genes were turned on or off during the process, comparing the disease carrying and normal cells.

They built on a previous discovery of Srivastava, who found that a defect in the gene NOTCH1 can cause valve birth defects and CAVD. Searching hundreds of genes and gene switches they came upon three genes that appear to be master regulators of the path that leads cells to overproduce calcium. In a press release from the Gladstone, he said:

“Identifying these master regulators is a big step in treating CAVD, not just in people with the NOTCH1 mutation, but also in other patients who experience calcification in their valves and arteries. Now that we know how calcification happens and what the key nodes are, we know what genes to look for that might be mutated in other related forms of cardiovascular disease.”

The release noted that the research team is now screening for drugs that can act on this gene network. Srivastava’s main focus has been on congenital pediatric heart disease. He discusses that research in three brief videos that include the story of one very special young patient.

Pioneer’s 25-year struggle to treat blindness

Being a pioneer is never easy. You are charting unknown territory, tackling problems that have defeated others before you. You have to overcome so many obstacles that at times the challenge can seem insurmountable. But for those who succeed in reaching their goal, the rewards can be extraordinary.

Graziella Pellegrini, Center for Regenerative Medicine, University of Modena, Italy

Graziella Pellegrini, Center for Regenerative Medicine, University of Modena, Italy

Last month Italian researcher Graziella Pellegrini saw 25 years of work pay off when a treatment she developed to cure a form of blindness was given approval for sale by the European Commission.

This is quite an achievement as this means her treatment, called Holoclar, is among the first commercial stem therapies in the world (the first was Prochymal, which has been approved in Canada and New Zealand for the treatment of pediatric GVHD. This drug was developed by Osiris, which was led by our current President & CEO, Dr. Randy Mills.)

Holoclar uses stem cells to help stimulate the regrowth of a cornea. It can only be used for certain rare conditions, but that in no way diminishes its importance for patients or significance for the regenerative medicine field as a whole.

Nature recently sat down with Dr. Pellegrini to talk about her work, her struggle, and the many obstacles she had to overcome to get market approval for her work.

The interview makes for fascinating reading, and is a timely reminder why this kind of groundbreaking research never goes quite as quickly, or smoothly, as one would hope.

CIRM currently has a number of projects focused treating different causes of blindness on limbal cells (the kind Dr. Pellegrini worked on) and other forms of blindness; including a project to treat macular degeneration that has been approved for a clinical trial, and a therapy for retinitis pigmentosa that we hope will be approved for a clinical trial later this year.