Stem cell stories that caught our eye: new ways to reprogram, shifting attitudes on tissue donation, and hockey legend’s miracle questioned

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Insulin-producing cells produced from skin. Starting with human skin cells a team at the University of Iowa has created iPS-type stem cells through genetic reprogramming and matured those stem cells into insulin-producing cells that successfully brought blood-sugar levels closer to normal when transplanted in mice.

University of Iowa researchers reprogrammed human skin cells to create iPS cells, which were then differentiated in a stepwise fashion to create insulin-producing cells. When these cells were transplanted into diabetic mice, the cells secreted insulin and reduced the blood sugar levels of the mice to normal or near-normal levels. The image shows the insulin-producing cells (right) and precursor cells (left). [Credit: University of Iowa]

University of Iowa researchers reprogrammed human skin cells to create iPS cells, which were then differentiated in a stepwise fashion to create insulin-producing cells. When these cells were transplanted into diabetic mice, the cells secreted insulin and reduced the blood sugar levels of the mice to normal or near-normal levels. The image shows the insulin-producing cells (right) and precursor cells (left).
[Credit: University of Iowa]

The cells did not completely restore blood-sugar levels to normal, but did point to the possibility of achieving that goal in the future, something the team leader Nicholas Zavazava noted in an article in the Des Moines Register, calling the work an “encouraging first step” toward a potential cure for diabetes.

The Register discussed the possibility of making personalized cells that match the genetics of the patient and avoiding the need for immune suppression. This has long been a goal with iPS cells, but increasingly the research community has turned to looking for options that would avoid immune rejection with donor cells that could be off-the-shelf and less expensive than making new cells for each patient.

Heart cells from reprogramming work in mice. Like several other teams, a group in Japan created beating heart cells from iPS-type stem cells. But they went the additional step of growing them into sheets of heart muscle that when transplanted into mice integrated into the animals own heart and beat to the same rhythm.

The team published the work in Cell Transplantation and the news agency AlianzaNews ran a story noting that it has previously been unclear if these cells would get in sync with the host heart muscle. The result provides hope this could be a route to repair hearts damaged by heart attack.

Patient attitudes on donating tissue. A University of Michigan study suggests most folks don’t care how you use body tissue they donate for research if you ask them about research generically. But their attitudes change when you ask about specific research, with positive responses increasing for only one type of research: stem cell research.

On the generic question, 69 percent said go for it, but when you mentioned the possibility of abortion research more than half said no and if told the cells might lead to commercial products 45 percent said nix. The team published their work in the Journal of the American Medical Association and HealthCanal picked up the university’s press release that quoted the lead researcher, Tom Tomlinson, on why paying attention to donor preference is so critical:

“Biobanks are becoming more and more important to health research, so it’s important to understand these concerns and how transparent these facilities need to be in the research they support.”

CIRM has begun building a bank of iPS-type stem cells made from tissue donated by people with one of 11 diseases. We went through a very detailed process to develop uniform informed consent forms to make sure the donors for our cell bank knew exactly how their cells could be used. Read more about the consent process here.

Mainstream media start to question hockey legend’s miracle. Finally some healthy skepticism has arrived. Hockey legend Gordie Howe’s recovery from a pair of strokes just before the holidays was treated by the general media as a true Christmas miracle. The scientific press tried to layer the coverage with some questions of what we don’t know about his case but not the mainstream media. The one exception I saw was Brad Fikes in the San Diego Union Tribune who had to rely on a couple of scientists who were openly speaking out at the time. We wrote about their concerns then as well.

Now two major outlets have raised questions in long pieces back-to-back yesterday and this morning. The Star in hockey-crazed Canada wrote the first piece and New York Magazine wrote today’s. Both raise serious questions about whether stem cells could have been the cause of Howe’s recovery and are valuable additions to the coverage.

Getting the right tools for the right job

Imagine a device that sits outside the body and works like a form of dialysis for a damaged liver, filtering out the toxins and giving the liver a chance to regenerate, and the patient a chance to avoid the need for a transplant.

Or imagine a method of enhancing the number of stem cells we can harvest or generate from umbilical cord blood, enabling us to use those stem cells and offer life-saving bone marrow transplants to all the patients who don’t have a matched donor.

Well, you may not have to imagine for too long. Yesterday, our governing Board approved almost $30 million in funding for our Tools and Technology Awards and two of the successful applications are for researchers hoping to turn those two ideas into reality.

The Tools n Tech awards may not have the glamor or cache of the big money awards that are developing treatments heading towards clinical trials, but they are nonetheless an essential part of what we do.

As our Board Chair Jonathan Thomas said in a news release they focus on developing new approaches or creating new ways of overcoming some of the biggest obstacles in stem cell research.

“Sometimes even the most promising therapy can be derailed by a tiny problem. These awards are designed to help find ways to overcome those problems, to bridge the gaps in our knowledge and ensure that the best research is able to keep progressing and move out of the lab and into clinical trials in patients.”

Altogether 20 awards were funded for a wide variety of different ideas and projects. Some focus on improving our ability to manufacture the kinds of cells we need for transplanting into patients. Another one plans to use a new class of genetic engineering tools to re-engineer the kind of stem cells found in bone marrow, making them resistant to HIV/AIDS. They also hope this method could ultimately be used to directly target the stem cells while they are inside the body, rather than taking the cells out and performing the same procedure in a lab and later transplanting them back.

Dr. Kent Leach, UC Davis School of Engineering

Dr. Kent Leach, UC Davis School of Engineering

One of the winners was Dr. Kent Leach from the University of California, Davis School of Engineering. He’s looking to make a new kind of imaging probe, one that uses light and sound to measure the strength and durability of bone and cartilage created by stem cells. This could eliminate the need for biopsies to make the same measurements, which is good news for patients and might also help reduce healthcare costs.

We featured Dr. Leach in one of our Spotlight videos where he talks about using stem cells to help repair broken bones that no longer respond to traditional methods.

Strong ARMing regenerative medicine; bold thoughts on a bright future

It’s a time-honored tradition for the President of the United States to begin his State of the Union speech by saying “The state of our union is strong.” Well, Ed Lanphier, the incoming Chairman of the Alliance for Regenerative Medicine (ARM) – the industry trade group – took a leaf out of that book in kicking off the annual “State of the Industry Briefing” in San Francisco yesterday. He said the state of the industry is not just strong, but getting stronger all the time.

ARM_State_of_the_Industry_Briefing_2015_And he had the facts to back him up. In monetary terms alone he said the regenerative medicine field raised $6.3 billion in 2014, compared to $2.3 billion in 2013.

He pointed to the growing number of partnerships and alliances between big pharmaceutical businesses and smaller biotech and cell therapy companies as a sign that deep pocket investors recognize the potential in the field, saying “Big Pharma sees the value of these outcomes and the maturation of these pipelines.”

Lanphier also highlighted the more than 375 clinical trials that were underway last year, and the fact that more than 60 regenerative medicine products have been approved.

But he also pointed out that the field as a whole faces some big challenges in the coming years. One of the most pressing could be pricing. He cited criticisms that exploded over medicines like Gilead’s hepatitis C treatment Sovaldi because of its $1,000-a-day price tag. Lanphier warned that regenerative medicine could face similar criticisms when some of its therapies are finally approved, because they are likely to be very expensive (at least to start with). He said we need to start thinking now how to talk to patients and the public in general about this, so they understand why these treatments are so expensive, but may be cheaper in the long run if they cure rather than just treat disease.

As if to reinforce that message the first panel discussion in the briefing focused on the gene therapy and genome-editing field. Panel members talked about the high expectations for this field in the 1990’s but that it took decades of work before we finally started to see those early hopes turn into reality.

Jeffrey Walsh, the COO of bluebird bio talked about: “The excitement about gene therapy in the early days… and then having to survive the 15-20 years after that in the very challenging days for gene therapy.”

Katrine Bosley, the CEO of Editas Medicine, says those challenges have not gone away and that the field will have to address some big issues in the future. Among those are working with regulatory agencies such as the Food and Drug Administration (FDA) to win approval for completely new ways of treating disease. Another is anticipating the kinds of ethical issues they will have to address in using these techniques to alter genes.

Questions about the regulatory process also popped up in the second panel, which focused more on advanced therapy and drug development. Paul Laikind of ViaCyte (whose clinical trial in type 1 diabetes we are funding) highlighted those challenges saying: “Making the cells the way you want is not rocket science; but doing it in a way that meets regulatory requirements is rocket science.”

Paul Wotton, the President and CEO of Ocata Therapeutics (formerly called ACT) echoed those sentiments:

“We are pioneering things here and it’s the pioneers who often end up with arrows in their back, so you really have to spend a lot of time working with the FDA and other regulatory bodies to make sure you are having all the right conversations ahead of time.”

But while everyone freely acknowledged there are challenging times ahead, the mood was still very positive, perhaps best summed up by C. Randal Mills, the President of CEO of CIRM and moderator of the panel, when he said:

“I find it remarkable where we are in this space today – with this number of cutting edge companies in clinical trials. Stem cell therapy is becoming a reality, it’s no longer a place where only a foolish few dare to go in; it’s a reality. There is a change in the practice of medicine that is coming and we are all fortunate to be a part of it.”

CIRM-funded scientists track the steps that take an adult cell back in time

The ability to transform an adult cell back into a stem cell has been heralded as one of the greatest achievements of the 21st century. Scientists have lauded this discovery, made by Nobel Prize-winning scientist Shinya Yamanaka, as a game changer for the future of medicine.

Despite this extraordinary advance, the method remains inefficient. And even the top experts still don’t quite understand how it works.

But now, a team of stem cell scientists from the University of California, Los Angeles (UCLA) has mapped the precise series of steps that an adult skin cell must go through to become a stem cell. The results, published online in the journal Cell, represent a much-needed step towards bringing cellular reprogramming forward.

A colony of iPSC's obtained by reprogramming a specialized cell for two weeks. The starting specialized cells can only make more of themselves, while the reprogrammed cells obtained from them can give rise to all cells of the body.

A colony of iPSC’s obtained by reprogramming a specialized cell for two weeks. The starting specialized cells can only make more of themselves, while the reprogrammed cells obtained from them can give rise to all cells of the body.

In this study, co-first authors Vincent Pasque and Jason Tchieu initiated the reprogramming process, whereby adult cells are reprogrammed back into embryonic-like stem cells. Yamanaka called these cells induced pluripotent stem cells, or iPSCs.

In order to map the steps being taken to reprogram these cells, the team devised a detailed time-course analysis whereby they would observe and analyze the cells each day as they transformed over a period of two weeks.

Importantly, the team found that no matter what type of adult cells were involved, the specific steps it took during reprogramming were the same. This revelation, that all adult cell types follow the same road map, is one of the most exciting discoveries. Said Pasque in a news release:

“The exact stage of reprogramming of any cell can now be determined. This study signals a big change in our thinking, because it provides simple and efficient tools for scientists to study stem cell creation in a stage-by-stage manner.”

The research team, led by CIRM grantee Katherin Plath, also uncovered some interesting information about the sequence of steps taken by these reprogrammed cells.

When an adult cell is reprogrammed back into an iPSC, it is not simply that all the steps that normally take an embryonic stem cell into an adult cell are reversed. Some may be reversed in the correct order, but others are not. And some steps are put off until the very end—indicating strong resistance against reprogramming.

“This reflects how cells do not like to change from one specialized cell type into another and resist a change in cellular identity,” said Pasque.

With future work, the team hopes to continue to investigate the reprogramming process. They are also hopeful that this newfound insight will bring robust iPSC-based therapies to the clinic.

CIRM 2.0: A New Year, a new start, a new way to advance research

It’s tradition to begin the New Year by making a resolution. Wikipedia has a wonderful description of what this involves saying it is where “a person makes a promise to do an act of self-improvement or something slightly nice, such as opening doors for people beginning from New Year’s Day.”

CIRM2.0_Logo

Well, by that criteria, CIRM 2.0 is a perfect way for us to start 2015 because it is both an act of self-improvement and something “slightly nice” (love that phrase).

2.0, for those of you who haven’t been following us, is a rather dramatic overhaul of the way we do business. It’s about streamlining the way we work in a way that places added emphasis on speed, partnerships and patients.

CIRM 2.0 makes it easier for both companies and academic researchers with promising projects to partner with CIRM to get the support they need when they need it, reducing the time from application to funding from around two years to just 120 days – that’s the “self-improvement”.

In a news release marking the launch of 2.0, our President and CEO Randy Mills summed up the reason why we are making these changes:

“Our mission is to accelerate the development of stem cell therapies for patients with unmet medical needs. Today, in officially launching the first three programs under CIRM 2.0, we have boldly reaffirmed our commitment to continuously seek new and innovative ways to better serve that mission.”

Simply put, we hope that by improving the way we work we can help speed up the development of treatments for patients in need. I would say that more than qualifies as being “slightly nice.”

You can hear Randy talking about CIRM 2.0 here

This is just the first phase of our new look. In December our governing Board gave us $50 million to get this up and running for clinical stage work over the next six months (you can find links to the Program Announcements for that work on our news release). Later this year we are going to expand 2.0 to include both discovery – or basic – research and translational research.

We are now in our 11th year as an agency funding stem cell research. Last year was a big year for us with 8 projects we are funding approved for clinical trials. But as we see every New Year, getting a little older shouldn’t stop you from wanting to improve or making the next year or years even better. Or from just doing something “slightly nice” for others.

Stem Cell Stories that Caught Your Eye: The Most Popular Stem Cellar Stories of 2014

2014 marked an extraordinary year for regenerative medicine and for CIRM. We welcomed a new president, several of our research programs have moved into clinical trials—and our goal of accelerating treatments for patients in need is within our grasp.

As we look back we’d like to revisit The Stem Cellar’s ten most popular stories of 2014. We hope you enjoyed reading them as much as we did reporting them. And from all of us here at the Stem Cell Agency we wish you a Happy Holidays and New Year.

10. UCSD Team Launches CIRM-Funded Trial to Test Safety of New Leukemia Drug

9. Creating a Genetic Model for Autism, with a Little Help from the Tooth Fairy

8. A Tumor’s Trojan Horse: CIRM Researchers Build Nanoparticles to Infiltrate Hard-to-Reach Tumors

7. CIRM funded therapy for type 1 diabetes gets FDA approval for clinical trial

6. New Videos: Living with Crohn’s Disease and Working Towards a Stem Cell Therapy

5. Creativity Program Students Reach New Heights with Stem Cell-Themed Rendition of “Let it Go”

4. Scientists Reach Yet Another Milestone towards Treating Type 1 Diabetes

3. Meet the Stem Cell Agency President C. Randal Mills

2. Truth or Consequences: how to spot a liar and what to do once you catch them

1. UCLA team cures infants of often-fatal “bubble baby” disease by inserting gene in their stem cells; sickle cell disease is next target

CIRM-Funded UC-Irvine Team Set to Launch Stem Cell Trial for Retinitis Pigmentosa in 2015

Rosalinda Barrero has often been mistaken for a rude snob. She has the habit of not saying hello or even acknowledging the presence of acquaintances that she passes around town. But in fact this kind, loving mom of three has been steadily losing her vision over a lifetime. And she doesn’t seem blind because people are still vaguely visible as shadowy ghosts but their faces are unrecognizable.

RosalindaBarrero_blog

Rosalinda Barrero is legally blind due to retinitis pigmentosa. She eagerly awaits the launch of a CIRM-funded trial that will test a candidate stem cell-based treatment.

Barrero is stricken with retinitis pigmentosa (RP) an incurable genetic disease that gradually destroys the light sensing nerve cells, called photoreceptors, located in the retina at the back of the eye. In October, Rosalinda and her husband German spoke to the CIRM governing Board about the devastating impact of RP on their lives and their excitement about a soon to begin CIRM-funded stem cell-based clinical trial for the treatment of RP. The project is headed by UC-Irvine associate professor Henry Klassen, MD, PhD, who also spoke to the Board. Videos of their presentations are now available on our website and below:

Over 3000 known genetic mutations can give rise to RP. These mutations lead to the gradual deterioration of the so-called rod photoreceptors. These rod cells specifically provide our night vision — like on a moonless night. Rosalinda clearly remembers her childhood struggles with night blindness on Halloween:

“I didn’t like trick-or-treating because I couldn’t see in the dark. I ‘d say ‘this is not fun! I’m tripping! I’m losing all my candy!’ I wanted to stay home and hand out candy”

Unfortunately the disease doesn’t stop there. As the rods continue to die off another type of photoreceptor, the cone cells, become innocent bystanders and also gradually deteriorate later in life. As Dr. Klassen explained, it’s the cone cells that are critical for our sight:

“The cones are what humans use for almost all of their vision. Even at night when you’re driving a car with headlights you’re using mainly your cones. So if we could preserve the cones we can really help the patient.”

With the support of a $17 million CIRM Disease Team grant, Klassen and his team anticipates starting a stem-call based clinical trial in early 2015 with the ultimate aim of healing those cone cells in RP patients. The therapy uses a type of immature stem cell of the retina called retinal progenitor cells. The proposed approach relies on the injection of the cells into the jelly of the eye near the retina to promote indirect healing. Klassen explained the project rationale to the Board:

“So we’re talking about little clusters of cells that could fit on the head of a pin in the jelly of the eye and they’re just floating there. And what are they going to do? Well they just sit there and secrete all the factors they normally secrete during retinal development and diffuse into the retina. Once in the retina we believe [based on animal studies] those factors are going to reprogram the photoreceptors into becoming functional again instead of going down that road where they’re going to commit suicide.”

Rosalinda is beyond thrilled with the prospect of being a recipient of this candidate therapy. Her husband German echoed her hopefulness to the Board:

“Even though it’s not a deadly disease, [the therapy] would be life-changing not only for Rosie it would be for everyone around her. “

To learn more about CIRM-funded research related to blindness, visit our fact sheet.

December ICOC Board Meeting to Begin Soon

The December ICOC Board Meeting begins this morning in Berkeley, CA.

The complete agenda can be found here. Dude to inclement weather our Spotlight on Disease has been canceled.

For those not able to attend, you are welcome to dial in:

To join the event as an attendee
——————————————————-
1. Go to https://cirm.webex.com/mw0307l/mywebex/default.do?nomenu=true&siteurl=cirm&service=6&rnd=0.3004049356896069&main_url=https%3A%2F%2Fcirm.webex.com%2Fec0606l%2Feventcenter%2Fevent%2FeventAction.do%3FtheAction%3Dlandingfrommail%26confViewID%3D2023263422%26%26EMK%3D4832534b0000000206e16422b6688520d75b860933effb35ce2c41b56594ba5351fdb8c0a969dd92%26email%3Dacheung%2540cirm.ca.gov%26encryptTicket%3Daee20fe734ccdae68884f9fe07b3197e%26%26siteurl%3Dcirm

2. Click “Join Now”.

——————————————————-
To join the teleconference only
——————————————————-
Dial in: (800) 398-9389

Confirmation Number: 346314

To access the live event or archive, use this URL:

https://im.csgsystems.com/cgi-bin/confCast

Enter Conference ID# 346314

[Members of the Public will be invited to provide testimony before or during consideration of each item. Makers of public comments are asked to limit their testimony to three (3) minutes.]

How partnering with someone half way around the world could help develop new treatments here in California

Much as we love California, and we really do, even we have to admit that genius knows no boundaries and that great scientific research is taking place all over the world. As our goal as an agency is to accelerate the development of successful therapies for people in need it only makes sense that we would try and tap into that genius, wherever it is, in whatever way we can. That’s where our Collaborative Funding Partnership (CFP) program comes in.

Michel Hivert, Executive Director at MATIMOP (L) and ICOC Chairman Jonathan Thomas

Michel Hivert, Executive Director at MATIMOP (L) and ICOC Chairman Jonathan Thomas

Under Proposition 71, the voter-approved initiative that created the stem cell agency, all the research we fund has to be in California. But that doesn’t mean we can’t help create collaborations between researchers here – that we fund – and researchers in other parts of the world who get funding from other sources. And we do just that. In fact we now have 24 CFPs stretching from New York state to Brazil, Japan, the UK and Australia.

And now we have added two more. One with Poland two weeks ago  and today, with Israel. As the Chair of our governing Board, Jonathan Thomas said in a news release , the goal of these agreements is simple, to advance stem cell research around the world:

“Israel has long had a robust stem cell research community. Through this newly announced collaboration, we hope to generate partnerships between Israeli and California scientists that build on our complementary strengths and generate joint research projects that will benefit patients everywhere.”

Dr. Andy David, Consul General of Israel to the Pacific North West, echoed those sentiments:

“It represents a practical expression of shared interests that is unusual for its depth and range. Israel and California are on opposite corners of the globe geographically, but they are practically coming closer every day. The reason for this thriving relationship is the understanding that we are strong mutual assets.”

But nice as these partnerships are the only questions that really matter are do these collaborations really make a difference; do they really help increase the likelihood of a successful therapy? The answer from our experience is yes. For example, a team we are funding at Stanford is collaborating with a team from the Medical Research Council in the UK, focused on solid tumor cancers. The Stanford team has been given approval by the Food and Drug Administration (FDA) to run a clinical trial testing this approach on solid tumors, while the UK team is using the same approach to tackling acute myeloid leukemia (AML) an often-fatal cancer of the blood and bone marrow. Knowledge gained from one trial may well benefit the other and could ultimately lead to approaches to treating other solid tumor cancers such as breast, ovarian, bladder and colon.

Disease does not stop at the border and we see no reason for our engagement with the best science, and the best scientists, to stop there either. Our goal is to find cures, and we’ll go wherever we have to and work with whoever we can to meet that goal.