Throwback Thursday: Progress to a Cure for Type 1 Diabetes

Welcome back to our “Throwback Thursday” series on the Stem Cellar. Over the years, we’ve accumulated an arsenal of valuable stem cell stories on our blog. Some of these stories represent crucial advances towards stem cell-based cures for serious diseases and deserve a second look.

novemberawarenessmonthThis week in honor of Diabetes Awareness Month, we are featuring type 1 diabetes (T1D), a chronic disease that destroys the insulin-producing beta cells in your pancreas. Without these important cells, patients cannot maintain the proper levels of glucose, a fancy name for sugar, in their blood and are at risk for many complications including heart disease, blindness, and even death.

Cell replacement therapy is evolving into an attractive option for patients with T1D. Replacing lost beta cells in the pancreas is a more permanent and less burdensome solution than the daily insulin shots (or insulin pumps) that many T1D patients currently take.

So let’s take a look at the past year’s advances in stem cell research for diabetes.

Making Insulin-Producing Cells from Stem Cells and Skin

This year, there were a lot of exciting studies that improved upon previous methods for generating pancreatic beta cells in a dish. Here’s a brief recap of a few of the studies we covered on our blog:

  • Make pancreatic cells from stem cells. Scientists from the Washington University School of Medicine in St. Louis and the Harvard Stem Cell Institute developed a method that makes beta cells from T1D patient-derived induced pluripotent stem cells (iPSCs) that behave very similarly to true beta cells both in a dish and when transplanted into diabetic mice. Their discovery has the potential to offer personalized stem cell treatments for patients with T1D in the near future and the authors of the study predicted that their technology could be ready to test in humans in the next three to five years.
  • Making functional pancreatic cells from skin. Scientists from the Gladstone Institutes used a technique called direct reprogramming to turn human skin cells directly into pancreatic beta cells without having to go all the way back to a pluripotent stem cell state. The pancreatic cells looked and acted like the real thing in a dish (they were able to secrete insulin when exposed to glucose), and they functioned normally when transplanted into diabetic mice. This study is exciting because it offers a new and more efficient method to make functioning human beta cells in mass quantities.

    Functioning human pancreatic cells after they’ve been transplanted into a mouse. (Image: Saiyong Zhu, Gladstone)

    Functioning human pancreatic cells after they’ve been transplanted into a mouse. (Image: Saiyong Zhu, Gladstone)

  • Challenges of stem cell-derived diabetes treatments. At this year’s Ogawa-Yamanaka Stem Cell Award ceremony Douglas Melton, a well-renowned diabetes researcher from Harvard, spoke about the main challenges for developing stem cell-derived diabetes treatments. The first is the need for better control over the methods that make beta cells from stem cells. The second was finding ways to make large quantities of beta cells for human transplantation. The last was finding ways to prevent a patient’s immune system from rejecting transplanted beta cells. Melton and other scientists are already working on improving techniques to make more beta cells from stem cells. As for preventing transplanted beta cells from being attacked by the patient’s immune system, Melton described two possibilities: using an encapsulation device or biological protection to mask the transplanted cells from an attack.

Progress to a Cure: Clinical Trials for Type 1 Diabetes

Speaking of encapsulation devices, CIRM is funding a Phase I clinical trial sponsored by a San Diego-based company called ViaCyte that’s hoping to develop a stem cell-based cure for patients with T1D. The treatment involves placing a small encapsulated device containing stem cell-derived pancreatic precursor cells under the skin of T1D patients. Once implanted, these precursor cells should develop into pancreatic beta cells that can secrete insulin into the patient’s blood stream. The goal of this trial is first to make sure the treatment is safe for patients and second to see if it’s effective in improving a patient’s ability to regulate their blood sugar levels.

To learn more about this exciting clinical trial, watch this fun video made by Youreka Science.

ViaCyte is still waiting on results for their Phase 1 clinical trial, but in the meantime, they are developing a modified version of their original device for T1D called PEC-Direct. This device also contains pancreatic precursor cells but it’s been designed in a way that allows the patient’s blood vessels to make direct connections to the cells inside the device. This vascularization process hopefully will improve the survival and function of the insulin producing beta cells inside the device. This study, which is in the last stage of research before clinical trials, is also being funded by CIRM, and we are excited to hear news about its progress next year.

ViaCyte's PEC-Direct device allows a patient's blood vessels to integrate and make contact with the transplanted beta cells.

ViaCyte’s PEC-Direct device allows a patient’s blood vessels to integrate and make contact with the transplanted beta cells.


Related Links:

Deleting a single gene can boost blood stem cell regeneration

A serious side effect that cancer patients undergoing chemotherapy experience is myelosuppression. That’s a big word for a process that involves the decreased production of the body’s immune cells from hematopoietic stem cells (HSCs) or blood stem cells in the bone marrow. Without these important cells that make up the immune system, patients are at risk for major infections and even death.

Human blood (red) and immune cells (green) are made from hematopoietic/blood stem cells. Photo credit: ZEISS Microscopy.

Human blood (red) and immune cells (green) are made from hematopoietic/blood stem cells. Photo credit: ZEISS Microscopy.

Scientists are trying to find ways to treat cancer patients that have undergone myelosuppressive therapies, as well as patients that need bone marrow transplants to replace their own bone marrow that’s been damaged or removed. One possible solution is boosting the regenerative capacity of HSCs. Transplanting HSCs that are specially primed to reproduce rapidly into cells of the immune system could improve the outcome of bone marrow transplants in patients.

Deleting Grb10 boost blood stem cell regeneration

A CIRM-funded team from the UCLA Broad Stem Cell Research Center and the Jonsson Comprehensive Cancer Center has identified a single gene that can be manipulated to boost HSC regeneration in mice. The study, which was published in Cell Reports, found that deleting or turning off expression of an imprinted gene called Grb10 in HSCs caused these blood stem cells to reproduce more robustly after being transplanted into mice that had their bone marrow removed.

I just used another big word in that last paragraph, so let me explain. An imprinted gene is a gene that is expressed or activated based on which parent it was inherited from. Typically, you receive one copy of a gene from your mother and one from your father and both are expressed – a process called Mendelian inheritance. But imprinted genes are different – they are marked with specific epigenetic tags that silence their expression in the sperm or egg cells of the parents. Thus if you inherited an imprinted gene from your mother, the other copy of that gene from your father would be expressed and vice versa.

Scientists have discovered that imprinted genes are important for human development and also for directing what cell types adult stem cells like HSCs develop into. The team from UCLA led by senior author Dr. John Chute, was interested in answering a different question: are imprinted genes involved in determining the function of HSCs? They compared two different populations of HSCs derived from mouse bone marrow: a normal, healthy population and HSCs exposed to total body irradiation (TBI), which destroys the immune system. They discovered that the expression of an imprinted gene called Grb10 was dramatically higher in HSCs exposed to TBI compared to healthy HSCs.

Cell Reports

Deleting Grb10  increases blood stem cell regeneration in the bone marrow of irradiated mice (bottom) compared to normal mice (top). Cell Reports

Because Grb10 is an imprinted gene, the scientists deleted either the paternal or maternal copy of that gene in mice. While deleting the paternal Grb10 gene had no effect on the function of HSCs, maternal deletion dramatically boosted the capacity of HSCs to divide and make more copies of themselves. Without the maternal copy of Grb10, HSCs were able to regenerate at a much faster scale than normal HSCs.

To further prove their point, the team transplanted normal HSCs and HSCs that lacked Grb10 into TBI or fully irradiated mice. HSCs that lacked Grb10 were able to regenerate themselves and produce other immune cells more robustly 20 weeks after transplantation compared to normal HSCs.

Potential applications and future studies

This study offers two important findings. First, they discovered that Grb10 plays an important role “in regulating HSC self-renewal following transplantation and HSC regeneration in response to injury.” Second, they found that inhibiting Grb10 function in HSCs could have potential therapeutic applications for boosting “hematopoietic regeneration in the setting of HSC transplantation or following myelosuppressive injury.” Patients in need of bone marrow transplants could potentially receive more benefit from transplants of HSCs that don’t express the Grb10 gene.

In my opinion, further studies should be done to further understand the role of Grb10 in regulating HSC self-renewal and regeneration. What is the benefit of having this gene expressed in HSCs if inhibiting its expression leads to an increased regenerative capacity? Is it to prevent cancer from forming? Additionally, the authors will need to address the potential long-term side effects of inhibiting Grb10 expression in HSCs. They did report that mice that lacked the Grb10 gene did not develop blood cancers at one year of age which is good news. They also suggested that instead of deleting Grb10, new drugs could be identified that inhibit Grb10 function in HSCs.

A patient perspective on how stem cells could give a second vision to the blind

October is Blindness Awareness month. In honor of the patients who suffer from diseases of blindness and of the scientists and doctors who work tirelessly to develop treatments and cures for these diseases, we are featuring an interview with Kristin Macdonald, a woman who is challenged by Retinitis Pigmentosa (RP).

RP is a genetically inherited disease that affects the photoreceptors at the back of the eye in an area called the retina. It’s a hard disease to diagnose because the first signs are subtle. Patients slowly lose their peripheral vision and ability to see well at night. As the disease progresses, the window of sight narrows and patients experience “tunnel vision”. Eventually, they become totally blind. Currently, there is no treatment for RP, but stem cell research might offer a glimmer of hope.

Kristin MacDonald

Kristin MacDonald

Kristin Macdonald was the first patient treated in a CIRM-funded stem cell trial for RP run by Dr. Henry Klassen at UC Irvine. She is a patient advocate and inspirational speaker for the blind and visually impaired, and is also a patient ambassador for Americans for Cures. Kristin is an amazing woman who hasn’t let RP prevent her from living her life. It was my pleasure to interview her to learn more about her life’s vision, her experience in CIRM’s RP trial, and her thoughts on patient advocacy and the importance of stem cell research.


Q: Tell us about your experience with being diagnosed with RP?

I was officially diagnosed with RP at 31. RP is a very difficult thing to diagnose, and I had to go through a series of doctors before we figured it out. The signs were there in my mid-to-late twenties, but unfortunately I didn’t really know what they were.

Being diagnosed with RP was really surprising to me. I grew up riding horses and doing everything. I had 20/20 vision and didn’t need any reading glasses. I started getting these night vision symptoms in my mid-to-late 20s in New York when I was in Manhattan. It was then that I started tripping, falling and getting clumsy. But I didn’t know what was happening and I was having such a great time with my life that I just denied it. I didn’t want to acknowledge that anything was wrong.

So I moved out to Los Angeles to pursue an acting and television career, and I just kept ignoring that thing in the brain that says “something’s wrong”. By the time I broke my arm for the second time, I had to go to see a doctor. And that’s when they diagnosed me.

Q: How did you boost yourself back up after being diagnosed with RP?

RP doesn’t come with an instruction booklet. It’s a very gradual adjustment emotionally, physically and spiritually. The first thing I did was to get out of denial, which was a really scary place to be because you can break your leg that way. You have to acknowledge what’s happening in life otherwise you’ll never get anywhere or past anything. That was my first stage of getting over denial. As I slowly started to accept things, I learned to live in the moment, which in a way is a big thing in life because we should all be living for today.

I think the fear of someone telling you that you’re going to go into the dark when you’ve always lived your life in the light can be overwhelming at times. I used to go to the mall and sometimes a door to a store would be gone or an elevator that I used to see is gone. What I did to deal with these fears and changes was to become as proactive as possible. I enlisted all of the best people around me in the business. I started doing charitable work for the Center for the Partially Sighted and for the Foundation for Fighting Blindness. I sat on the board of AIRSLA.org, an internet radio service for the blind and visually impaired, where I still do my radio show. Through that, I met other people who were going through the same type of thing and would come into my home to teach me independent living skills.

I remember the first day when an independent living counselor from the Center for the Partially Sighted came to my house and said we have to check in and see what your adjustment to blindness is like. Those words cut through me. “Adjustment to blindness”. It felt like I was going to prison, that’s how it felt like to me back then. But I am so glad I reached out to the Center for the Partially Sighted because they gave me invaluable instructions on how to function as a blind person. They helped me realize I could really live a good life and be whole, and that blindness would never define me.

I also worked a lot on my spiritual side. I read a lot of positive thinking books and found comfort in my faith in god and the support from my family, friends and my boyfriend. I can’t even enumerate how good they’ve been to me.

Q: How has being blind impacted your ability to do the things you love?

I’m a very social person, so giving up my car and suddenly being confined at night was crushing to me. And we didn’t have Uber back then! During that time, I had to learn how to lead a full life socially. I still love to do salsa dancing but it’s tricky. If I stand on the sidelines, some of the dancers will pass you by because they don’t know you’re blind. I also learned how to horseback ride and swim in the ocean – just a different way. I go in the water on a surf leash. Or I ride around the ring with my best friend guiding me.

Kristin loves to ride horses.

Kristin doesn’t let being mostly blind stop her from riding horses.

Q: What treatments have you had for RP?

I investigated just about everything that was out there. [Laughs] After I was diagnosed, I became very proactive to find treatments. But after a while, I became discouraged because these treatments either didn’t work or still needed time for the FDA to give approval.

I did participate in a study nine years ago and had genetically modified cells put into my eye. I had two surgeries: one to put the cells in and one to take them out because the treatment hadn’t done anything. I didn’t get any improvement, and that was crushing to me because I had hoped and waited so long.

I just kept praying, waiting, reading and hoping. And then boom, all the sudden I got a phone call from UC Irvine saying they wanted me to participate in their stem cell trial for RP. They said I’d be the third person in the world to have it done and the first in their clinical trial. They told me I was to be the first North American patient to have progenitor cells put in my eye, which is pretty amazing.

Q: Was it easy to decide to participate in the UC Irvine CIRM-funded trial?

Yes. But don’t get me wrong, I’m human. I was a little scared. It’s a new thing and you have to sign papers saying that you understand that we don’t exactly know what the results will be. Essentially, you are agreeing to be a pathfinder.

Luckily, I have not had any adverse effects since the trial. But I’ve always had a great deal of faith in stem cells. For years, I’ve been hearing about it and I’ve always put my hopes in stem cells thinking that that’s going to be the answer for blindness.

Q: Have you seen any improvements in your sight since participating in this trial?

I was treated a year ago in June. The stem cell transplant was in my left eye, my worse eye that has never gotten better. It’s been about 15 months now, and I started to see improvement after about two months following the treatment. When I would go into my bathroom, I noticed that it was a lot brighter. I didn’t know if I was imagining things, but I called a friend and said, “I don’t know if I’m imagining things but I’m getting more light perception in this eye.”

Sure enough, over a period of about eight months, I had gradual improvement in light perception. Then I leveled off, but now there is no question that I’m photo sensitive. When I go out, I use my sunglasses, and I see a whole lot more light.

Because I was one of the first patients in the trial, they had to give me a small dose of cells to test for safety. So it was amazing that a smaller dose of cells was still able to help me gain back some sight! One of the improvements that I’ve had is that I can actually see the image of my finger waving back and forth on my left side, which I couldn’t before when I put mascara on. I say this because I have put lip pencil all over my mouth by accident. That must have been a real sight! For a woman, putting on makeup is really important.

Q: What was your experience like participating in the UC Irvine trial?

Dr. Klassen who runs the UC Irvine stem cell trial for RP is an amazing person. He was in the room with me during the transplant procedure. I have such a high regard and respect for Dr. Klassen because he’s been working on the cure for RP as long as I’ve had it. He’s someone who’s dedicated his life to trying to find an answer to a disease that I’ve been dealing with on a day-to-day basis.

Dr. Klassen had the opportunity to become a retinal surgeon and make much more money in a different area. But because it was too crushing to talk to patients and give them such a sad diagnosis, he decided he was going to do something about it. When I heard that, I just never forgot it. He’s a wonderful man and he’s really dedicated to this cause.

Q: How have you been an advocate for RP and blindness?

I’ve been an advocate for the visually impaired in many different aspects. I have raised money for different research foundations and donated my time as a host and an MC to various charities through radio shows. I’ve had a voice in the visually impaired community in one way or another on and off for 15 years.

I also started getting involved in Americans for Cures only a few months ago. I am helping them raise awareness about Proposition 71, which created CIRM, and the importance of funding stem cell research in the future.

I may in this lifetime get actual vision again, a real second vision. But in the meantime, I’ve been working on my higher self, which is good because a friend of mine who is totally blind reminded me today, “Kristin, just remember, don’t live for tomorrow just getting that eye sight back”. My friend was born blind. I told him he is absolutely right. I know I can lead a joyful life either way. But trust me, having a cure for RP would be the icing on the cake for me.

Q: Why is it important to be a patient advocate?

I think it’s so important from a number of different aspects, and I really felt this at the International Society for Stem Cell Research (ISSCR) conference in San Francisco this summer when certain people came to talk to me afterwards, especially researchers and scientists. They don’t get to see the perspective of the patient because they are on the other side of the fence.

I think it’s very important to be a patient advocate because when you have a personal story, it resonates with people much more than just reading about something or hearing about something on a ballot.  It’s really vital for the future. Everybody has somebody or knows somebody who had macular degeneration or became visually impaired. If they don’t, they need to be educated about it.

Q: Tell us about your Radio Show.

My radio show “Second Vision” is about personal development and reinventing yourself and your life’s vision when the first one fails. It was the first internet radio show to support the blind and visually impaired, so that’s why I’m passionate about it. I’ve had scores of authors on there over the years who’ve written amazing books about how to better yourself and personal stories from people who have overcome adversity from all different types of challenges in terms of emotional health, physical health or problems in their lives. You can find anything on the Second Vision website from interviews on Reiki and meditation to Erik Weihenmayer, the blind man who climbed the seven summits (the highest mountains of each of the seven continents).

Q: Why is stem cell research important?

I do think that stem cells will help people with blindness. I don’t know whether it will be a 100% treatment. Scientists may have to do something else along the way to perfect stem cell treatments whether it’s gene therapy or changing the number of cells or types of cells they inject into the eye. I really do have a huge amount of faith in stem cells. If they can regenerate other parts of the body, I think the eye will be no different.

To read more about Kristin Macdonald and her quest for a Second Vision, please visit her website.


Related Links:

From Pig Parts to Stem Cells: Scientist Douglas Melton Wins Ogawa-Yamanaka Prize for Work on Diabetes

Since the 1920s, insulin injections have remained the best solution for managing type 1 diabetes. Patients with this disease do not make enough insulin – a hormone that regulates the sugar levels in your blood – because the insulin-producing cells, or beta cells, in their pancreas are destroyed.

Back then, it took two tons of pig parts to make eight ounces of insulin, which was enough to treat 10,000 diabetic patients for six months. Biotech and pharmaceutical companies have since developed different types of human insulin treatments that include fast and long acting versions of the hormone. It’s estimated that $22 billion will be spent on developing insulin products for patients this year and that costs will rise to $32 billion in the year 2019.

These costs are necessary to keep insulin-dependent diabetes patients alive and healthy, but what if there was a different, potentially simpler solution to manage diabetes? One that looks to insulin-producing beta cells as the solution rather than daily hormone shots?

Douglas Melton Receives Stem Cell Prize for Work on Diabetes

Harvard scientist Douglas Melton envisions a world where one day, insulin-dependent diabetic patients are given stem cell transplants rather than shots to manage their diabetes. In the 90s, Melton’s son was diagnosed with type 1 diabetes. Motivated by his son’s diagnosis, Melton dedicated the focus of his research on understanding how beta cells develop from stem cells in the body and also in a cell culture dish.

Almost 30 years later, Melton has made huge strides towards understanding the biology of beta cell development and has generated methods to “reprogram” or coax pluripotent stem cells into human beta cells.

Melton was honored for his important contributions to stem cell and diabetes research at the second annual Ogawa-Yamanaka Stem Cell Prize ceremony last week at the Gladstone Institutes. This award recognizes outstanding scientists that are translating stem cell research from the lab to clinical trials in patients.

img_0760

Deepak Srivastava, director of the Gladstone Institute of Cardiovascular Disease, explained why Melton was selected as this year’s prize winner:

Deepak Srivastava, Gladstone Institutes

Deepak Srivastava, Gladstone Institutes

“Doug’s research on genetic markers expressed during pancreas development have led to a reliable way to reprogram stem cells into human beta cells. His work provides the foundation for the ultimate goal of transplantable, patient-specific beta cells.”

 

Making Beta Cells for Patients

During the awards ceremony, Melton discussed his latest work on generating beta cells from human stem cells and how this technology could transform the way insulin-dependent patients are treated.

Douglas Melton, Harvard University.

Douglas Melton, Harvard University.

“I don’t mean to say that this [insulin treatment] isn’t a good idea. That’s keeping these people alive and in good health,” said Melton during his lecture. “What I want to talk about is a different approach. Rather than making more and better insulins and providing them by different medical devices, why not go back to nature’s solution which is the beta cells that makes the insulin?”

Melton first described his initial research on making pancreatic beta cells from embryonic and induced pluripotent stem cells in a culture dish. He described the power of this system for not only modeling diabetes, but also screening for potential drugs, and testing new therapies in animal models.

He also mentioned how he and his colleagues are developing methods to manufacture large amounts of human beta cells derived from pluripotent stem cells for use in patients. They are able to culture stem cells in large spinning flasks that accelerate the growth and development of pluripotent stem cells into billions of human beta cells.

Challenges and Future of Stem-Cell Derived Diabetes Treatments

Melton expressed a positive outlook for the future of stem cell-derived treatments for insulin-dependent diabetes, but he also mentioned two major challenges. The first is the need for better control over the methods that make beta cells from stem cells. These methods could be more efficient and generate higher numbers of beta cells (beta cells make up 16% of stem cell-derived cells using their current culturing methods). The second is preventing an autoimmune attack after transplanting the stem-cell derived beta cells into patients.

Melton and other scientists are already working on improving techniques to make more beta cells from stem cells. As for preventing transplanted beta cells from being attacked by the patient’s immune system, Melton described two possibilities: using an encapsulation device or biological protection to mask the transplanted cells from an attack.

img_0771

He mentioned a CIRM-funded clinical trial by ViaCyte, which is testing an encapsulation device that is placed under the skin. The device contains embryonic stem cell-derived pancreatic progenitor cells that develop into beta cells that secrete insulin into the blood stream. The device also prevents the immune system from attacking and killing the beta cells.

Melton also discussed a biological approach to protecting transplanted beta cells. In collaboration with Dan Anderson at MIT, they coated stem cell-derived beta cells in a biomaterial called alginate, which comes from seaweed. They injected alginate microcapsule-containing beta cells into diabetic mice and were able control their blood sugar levels.

At the end of his talk, Melton concluded that he believes that beta cell transplantation in an immunoprotective device containing stem cell-derived cells will have the most benefit for diabetes patients.

Gladstone Youtube video of Douglas Melton’s lecture at the Ogawa-Yamanaka Prize lecture.


Related Links:

 

Full Steam Ahead: First Patient is Dosed in Expanded CIRM Spinal Cord Injury Trial

Today we bring you more good news about a CIRM-funded clinical trial for spinal cord injury that’s received a lot of attention lately in the news. Asterias Biotherapeutics has treated its first patient in an expanded patient population of spinal cord injury patients who suffer from cervical, or neck, injuries.

In late August, Asterias reported that they had passed the first hurdle in their Phase 1/2a trial and showed that their stem cell therapy is safe to use in patients with a more serious form of cervical spinal cord injuries.

Earlier this month, we received more exciting updates from Asterias – this time reporting that the their embryonic stem cell-based therapy, called AST-OPC1, appeared to benefit treated patients. Five patients with severe spinal cord injuries to their neck were dosed, or transplanted, with 10 million cells. These patients are classified as AIS-A on the ASIA impairment scale – meaning they have complete injuries in which the spinal cord tissue is severed and patients lose all feeling and use of their limbs below the injury site. Amazingly, after three months, all five of the AIS-A patients have seen improvements in their movement.

Today, Asterias announced that it has treated its first patient with an AIS-B grade cervical spinal cord injury with a dose of 10 million cells at the Sheperd Center in Atlanta. AIS-B patients have incomplete neck injuries, meaning that they still have some spinal cord tissue at the injury site, some feeling in their arms and legs, but no movement. This type of spinal cord injury is still severe, but these patients have a better chance at gaining back some of their function and movement after treatment.

In a press release by Asterias, Chief Medical Officer Dr. Edward Wirth said:

“We have been very encouraged by the first look at the early efficacy data, as well as the safety profile, for AST-OPC1 in AIS-A patients, and now look forward to also evaluating efficacy and safety in AIS-B patients. AIS-B patients also have severe spinal cord injuries, but compared to AIS-A patients they have more spared tissue in their spinal cords.  This may allow these patients to have a greater chance of meaningful functional improvement after being treated with AST-OPC1 cells.”

Dr. Donald Peck Leslie, who directs the Sheperd Center and is the lead investigator at the Atlanta clinical trial site, expressed his excitement about the trials’ progress.

“As someone who regularly treats patients who have sustained paralyzing spinal cord injuries, I am encouraged by the progress we’ve seen in evaluations of AST-OPC1 in people with AIS-A injuries, particularly the improvements in hand, finger and arm function. Now, I am looking forward to continuing the evaluation of this promising new treatment in AIS-B patients, as well.”

Asterias has plans to enroll a total of five to eight AIS-B patients who will receive a dose of 10 million cells. They will continue to monitor all patients in this trial (both AIS-A and B) and will conduct long-term follow up studies to make sure that the AST-OPC1 treatment remains safe.

We hope that the brave patients who have participated in the Asterias trial continue to show improvements following treatment. Inspiring stories like that of Kris Boesen, who was the first AIS-A patient to get 10 million cells in the Asterias trial and now has regained the use of his arms and hands (and regaining some sensation in his legs), are the reason why CIRM exists and why we are working so hard to fund promising clinical trials. If we can develop even one stem cell therapy that gives patients back their life, then our efforts here at CIRM will be worthwhile.

Kris Boesen, CIRM spinal cord injury clinical trial patient.

Kris Boesen, CIRM spinal cord injury clinical trial patient.


Related Links:

Asterias’ stem cell clinical trial shows encouraging results for spinal cord injury patients

jake and family

Jake Javier; Asterias spinal cord injury clinical trial participant

When researchers are carrying out a clinical trial they have two goals: first, show that it is safe (the old “do no harm” maxim) and second, show it works. One without the other doesn’t do anyone any good in the long run.

A few weeks ago Asterias Biotherapeutics showed that their CIRM-funded stem cell therapy for spinal cord injuries appeared to be safe. Now their data suggests it’s working. And that is a pretty exciting combination.

Asterias announced the news at the annual scientific meeting of the International Spinal Cord Society in Vienna, Austria. These results cover five people who got a transplant of 10 million cells. While the language is muted, the implications are very encouraging:

“While early in the study, with only 4 of the 5 patients in the cohort having reached 90 days after dosing, all patients have shown at least one motor level of improvement so far and the efficacy target of 2 of 5 patients in the cohort achieving two motor levels of improvement on at least one side of their body has already been achieved.”

What does that mean for the people treated? A lot. Remember these are people who qualified for this clinical trial because of an injury that left them pretty much paralyzed from the chest down. Seeing an improvement of two motor levels means they are regaining some use of their arms, hands and fingers, and that means they are regaining the ability to do things like feeding, dressing and bathing themselves. In effect, it is not only improving their quality of life but it is also giving them a chance to lead an independent life.

kris-boesen

Kris Boesen, Asterias clinical trial participant

One of those patients is Kris Boesen who regained the use of his arms and hands after becoming the first patient in this trial to get a transplant of 10 million cells. We blogged about Kris here

Asterias says of the 5 patients who got 10 million cells, 4 are now 90 days out from their transplant. Of those:

  • All four have improved one motor level on at least one side
  • 2 patients have improved two motor levels on one side
  • One has improved two motor levels on both sides

What’s also encouraging is that none of the people treated experienced any serious side effects or adverse events from the transplant or the temporary use of immunosuppressive drugs.

Steve Cartt, CEO of Asterias, was understandably happy with the news and that it allows them to move to the next phase:

“We are quite encouraged by this first look at efficacy results and look forward to reporting six-month efficacy data as planned in January 2017.  We have also just recently been cleared to begin enrolling a new cohort and administering to these new patients a much higher dose of 20 million cells.  We look forward to begin evaluating efficacy results in this higher-dose cohort in the coming months as well.”

People with spinal cord injuries can regain some function spontaneously so no one is yet leaping to the conclusion that all the progress in this trial is due to the stem cells. But to see all of the patients in the 10 million stem cell group do well is at the very least a positive sign. Now the hope is that these folks will continue to do well, and that the next group of people who get a 20 million cell transplant will also see improvements.

reed

Roman Reed, spinal cord injury patient advocate

While the team at Asterias were being cautiously optimistic, Roman Reed, whose foundation helped fund the early research that led to this clinical trial, was much less subdued in his response. He was positively giddy:

“If one patient only improves out of the five, it can be an outlier, but with everyone improving out of the five this is legit, this is real. Cures are happening!”

 

Seeing is believing: how some scientists – including two funded by CIRM – are working to help the blind see

retinitis pigmentosas_1

How retinitis pigmentosa destroys vision – new stem cell research may help reverse that

“A pale hue”. For most of us that is a simple description, an observation about color. For Kristin Macdonald it’s a glimpse of the future. In some ways it’s a miracle. Kristin lost her sight to retinitis pigmentosa (RP). For many years she was virtually blind. But now, thanks to a clinical trial funded by CIRM she is starting to see again.

Kristin’s story is one of several examples of restoring sight in an article entitled “Why There’s New Hope About Ending Blindness” in the latest issue of National Geographic.  The article explores different approaches to treating people who were either born without vision or lost their vision due to disease or injury.

Two of those stories feature research that CIRM has funded. One is the work that is helping Kristin. Retinitis pigmentosa is a relatively rare condition that destroys the photoreceptors at the back of the eye, the cells that actually allow us to sense light. The National Geographic piece highlights how a research team at the University of California, Irvine, led by Dr. Henry Klassen, has been working on a way to use stem cells to replace and repair the cells damaged by RP.

“Klassen has spent 30 years studying how to coax progenitor cells—former stem cells that have begun to move toward being specific cell types—into replacing or rehabilitating failed retinal cells. Having successfully used retinal progenitor cells to improve vision in mice, rats, cats, dogs, and pigs, he’s testing a similar treatment in people with advanced retinitis pigmentosa.”

We recently blogged about this work and the fact that this team just passed it’s first major milestone – – showing that in the first nine patients treated none experienced any serious side effects. A Phase 1 clinical trial like this is designed to test for safety, so it usually involves the use of relatively small numbers of cells. The fact that some of those treated, like Kristin, are showing signs of improvement in their vision is quite encouraging. We will be following this work very closely and reporting new results as soon as they are available.

The other CIRM-supported research featured in the article is led by what the writer calls “an eyeball dream team” featuring University of Southern California’s Dr. Mark Humayun, described as “a courteous, efficient, impeccably besuited man.” And it’s true, he is.

The team is developing a stem cell device to help treat age-related macular degeneration, the leading cause of vision loss in the US.

“He and his fellow principal investigator, University of California, Santa Barbara stem cell biologist Dennis Clegg, call it simply a patch. That patch’s chassis, made of the same stuff used to coat wiring for pacemakers and neural implants, is wafer thin, bottle shaped, and the size of a fat grain of rice. Onto this speck Clegg distributes 120,000 cells derived from embryonic stem cells.”

Humayun and Clegg have just started their clinical trial with this work so it is likely going to be some time before we have any results.

These are just two of the many different approaches, using several different methods, to address vision loss. The article is a fascinating read, giving you a sense of how science is transforming people’s lives. It’s also wonderfully written by David Dobbs, including observations like this:

“Neuroscientists love the eye because “it’s the only place you see the brain without drilling a hole,” as one put it to me.”

For a vision of the future, a future that could mean restoring vision to those who have lost it, it’s a terrific read.

 

Stem cell stories that caught our eye: turning on T cells; fixing our brains; progress and trends in stem cells; and one young man’s journey to recover from a devastating injury

Healthy_Human_T_Cell

A healthy T cell

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Directing the creation of T cells. To paraphrase the GOP Presidential nominee, any sane person LOVES, LOVES LOVES their T cells, in a HUGE way, so HUGE. They scamper around the body getting rid of viruses and the tiny cancers we all have in us all the time. A CIRM-funded team at CalTech has worked out the steps our genetic machinery must take to make more of them, a first step in letting physicians turn up the action of our immune systems.

We have known for some time the identity of the genetic switch that is the last, critical step in turning blood stem cells into T cells, but nothing in our body is as simple as a single on-off event. The Caltech team isolated four genetic factors in the path leading to that main switch and, somewhat unsuspected, they found out those four steps had to be activated sequentially, not all at the same time. They discovered the path by engineering mouse cells so that the main T cell switch, Bcl11b, glows under a microscope when it is turned on.

“We identify the contributions of four regulators of Bcl11b, which are all needed for its activation but carry out surprisingly different functions in enabling the gene to be turned on,” said Ellen Rothenberg, the senior author in a university press release picked up by Innovations Report. “It’s interesting–the gene still needs the full quorum of transcription factors, but we now find that it also needs them to work in the right order.”

Video primer on stem cells in the brain.  In conjunction with an article in its August issue, Scientific American posted a video from the Brain Forum in Switzerland of Elena Cattaneo of the University of Milan explaining the basics of adult versus pluripotent stem cells, and in particular how we are thinking about using them to repair diseases in the brain.

The 20-minute talk gives a brief review of pioneers who “stood alone in unmarked territory.” She asks how can stem cells be so powerful; and answers by saying they have lots of secrets and those secrets are what stem cell scientist like her are working to unravel.  She notes stem cells have never seen a brain, but if you show them a few factors they can become specialized nerves. After discussing collaborations in Europe to grow replacement dopamine neurons for Parkinson’s disease, she went on to describe her own effort to do the same thing in Huntington’s disease, but in this case create the striatal nerves lost in that disease.

The video closes with a discussion of how basic stem cell research can answer evolutionary questions, in particular how genetic changes allowed higher organisms to develop more complex nervous systems.

kelley and kent

CIRM Science Officers Kelly Shepard and Kent Fitzgerald

A stem cell review that hits close to home.  IEEE Pulse, a publication for scientists who mix engineering and medicine and biology, had one of their reporters interview two of our colleagues on CIRM’s science team. They asked senior science officers Kelly Shepard and Kent Fitzgerald to reflect on how the stem cell field has progressed based on their experience working to attract top researchers to apply for our grants and watching our panel of outside reviewers select the top 20 to 30 percent of each set of applicants.

One of the biggest changes has been a move from animal stem cell models to work with human stem cells, and because of CIRM’s dedicated and sustained funding through the voter initiative Proposition 71, California scientists have led the way in this change. Kelly described examples of how mouse and human systems are different and having data on human cells has been critical to moving toward therapies.

Kelly and Kent address several technology trends. They note how quickly stem cell scientists have wrapped their arms around the new trendy gene editing technology CRISPR and discuss ways it is being used in the field. They also discuss the important role of our recently developed ability to perform single cell analysis and other technologies like using vessels called exosomes that carry some of the same factors as stem cells without having to go through all the issues around transplanting whole cells.

“We’re really looking to move things from discovery to the clinic. CIRM has laid the foundation by establishing a good understanding of mechanistic biology and how stem cells work and is now taking the knowledge and applying it for the benefit of patients,” Kent said toward the end of the interview.

jake and family

Jake Javier and his family

Jake’s story: one young man’s journey to and through a stem cell transplant; As a former TV writer and producer I tend to be quite critical about the way TV news typically covers medical stories. But a recent story on KTVU, the Fox News affiliate here in the San Francisco Bay Area, showed how these stories can be done in a way that balances hope, and accuracy.

Reporter Julie Haener followed the story of Jake Javier – we have blogged about Jake before – a young man who broke his spine and was then given a stem cell transplant as part of the Asterias Biotherapeutics clinical trial that CIRM is funding.

It’s a touching story that highlights the difficulty treating these injuries, but also the hope that stem cell therapies holds out for people like Jake, and of course for his family too.

If you want to see how a TV story can be done well, this is a great example.

Stem cell transplant offers Jake a glimpse of hope

Jake

Jake Javier surrounded by friends; Photo courtesy Julie Haener KTVU

On Thursday, July 7th, Jake Javier became the latest member of a very select group. Jake underwent a stem cell transplant for a spinal cord injury at Santa Clara Valley Medical Center here in the San Francisco Bay Area.

The therapy is part of the CIRM-funded clinical trial run by Asterias Biotherapeutics. For Asterias it meant it had hit a significant milestone (more on that later). But for Jake, it was something far more important. It was the start of a whole new phase in his life.

Jake seriously injured his spinal cord in a freak accident after diving into a swimming pool just one day before he was due to graduate from San Ramon Valley high school. Thanks, in part, to the efforts of the tireless patient advocate and stem cell champion Roman Reed, Jake was able to enroll in the Asterias trial.

astopc1The goal of the trial is to test the safety of transplanting three escalating doses of AST-OPC1 cells. These are a form of cell called oligodendrocyte progenitors, which are capable of becoming several different kinds of brain cells, some of which play a supporting role and help protect nerve cells in the central nervous system – the area damaged in spinal cord injury.

To be eligible, individuals have to have experienced a severe neck injury in the last 30 days, one that has left them with no sensation or movement below the level of their injury, and that means they have typically lost all lower limb function and most hand and arm function.

The first group of three patients was completed in August of last year. This group was primarily to test for safety, to make sure this approach was not going to cause any harm to patients. That’s why the individuals enrolled were given the relatively small dose of 2 million cells. So far none of the patients have experienced any serious side effects, and some have even shown some small improvements.

In contrast, the group Jake is in were given 10 million cells each. Jake was the fifth person treated in this group. That means Asterias can now start assessing the safety data from this group and, if there are no problems, can plan on enrolling people for group 3 in about two months. That group of patients will get 20 million cells.

It’s these two groups, Jakes and group 3, that are getting enough cells that it’s hoped they will see some therapeutic benefits.

In a news release, Steve Cartt, President and CEO of Asterias, said they are encouraged by the progress of the trial so far:

“Successful completion of enrollment and dosing of our first efficacy cohort receiving 10 million cells in our ongoing Phase 1/2a clinical study represents a critically important milestone in our AST-OPC1 clinical program for patients with complete cervical spinal cord injuries. In addition, while it is still very early in the development process and the patient numbers are quite small, we are encouraged by the upper extremity motor function improvements we have observed so far in patients previously enrolled and dosed in the very low dose two million cell cohort that had been designed purely to evaluate safety.”

 

jake and familyJake and his family are well aware that this treatment is not going to be a cure, that he won’t suddenly get up and walk again. But it could help him in other, important ways, such as possibly getting back some ability to move his hands.

The latest news is that Jake is doing well, that he experienced some minor problems after the surgery but is bouncing back and is in good spirits.

Jake’s mother Isabelle said this has been an overwhelming experience for the family, but they are getting through it thanks to the love and support of everyone who hears Jake’s story. She told CIRM:

 “We are all beyond thrilled to have an opportunity of this magnitude. Just the thought of Jake potentially getting the use of his hands back gives him massive hope. Jake has a strong desire to recover to the highest possible level. He is focused and dedicated to this process. You have done well to choose him for your research. He will make you proud.”

He already has.

Jake and Brady gear

New England Patriots star quarterback Tom Brady signed a ball and jersey for Jake after hearing about the accident


Related Links:

Sickle Cell Disease Leaves No Organ Untouched

“There really isn’t an organ in the body that isn’t affected by sickle cell disease.”

This striking comment was made by the Dr. Bertram Lubin, the CEO and President of the Children’s Hospital Oakland Research Institute (CHORI) and a CIRM Board Member.

Yesterday Dr. Lubin visited CIRM headquarters to talk about sickle cell disease (SCD). SCD is a group of inherited disorders caused by unhealthy, sickle-shaped red blood cells. People with SCD have abnormal hemoglobin, an important protein in red blood cells used to transport oxygen from the lungs to organs and tissues throughout the body.

The What, Why and Who of SCD

A mutation in the globlin gene leads to sickled red blood cells that clog up blood vessels

A mutation in the globlin gene leads to sickled red blood cells that clog up blood vessels

Genetic mutations in the hemoglobin genes lead to changes in the hemoglobin protein that cause normal, healthy disc-shaped red blood cells to take on a crescent, sickle shape. These sickle cells are a big problem because they stick to each other and to the walls of blood vessels, causing blockage and impeding blood flow. This leads to a plethora of clinical complications that we will touch on later in this blog.

Dr. Lubin shared some shocking facts including that 2 million African Americans are carriers of SCD mutations and 100,000 Americans have the disease. In the US, 1000 babies are born with SCD each year, but this number pales in comparison to the 1000 African babies that are born with SCD each day.

“So anything we do here with CIRM has a direct impact on sickle cell disease,” Lubin explained. “It’s something we should consider because it could have a global impact on SCD.”

SCD Affects Every Organ in the Body

Dr. Bertram Lubin

Dr. Bertram Lubin

Dr. Lubin next discussed a laundry list of clinical manifestations associated with SCD, making it clear that SCD is not just a blood disorder, it affects every organ and tissue in the body. Examples he gave included infection, enlarged spleen, stroke, bone disease, retinopathy, and gastro-intestinal complications. And these were only a handful of the symptoms he discussed that SCD patients deal with.

However, Dr. Lubin emphasized that early detection of SCD in babies can drastically improve the quality and length of life of SCD patients. He proudly explained how California was the first state to screen every newborn baby for SCD (a procedure that is now done in every state) and that CHORI’s Center for Sickle Cell Disease and Thalassemia is one of the major SCD programs in the world. Their center “strives to improve public awareness of these diseases, expand the current knowledge base, and ultimately, to provide innovative treatment, care – and cures.”

Dr. Lubin also commented on the importance of knowing if patients who go to the ER or doctor have SCD:

Dr. Bertram Lubin

Dr. Bertram Lubin

“With new born screening before we identified who had sickle cell disease, an African American child could come to the emergency room with a 103 F temperature. And they would say, well this is a virus, go home, and half of those kids would die by the next day. Because those with pneumococcal sepsis [a bacterial infection that SCD patients have an increased risk for] don’t last very long. Now when someone comes into the emergency room with a 103 F temperature and we know they have sickle cell, they get antibiotics right away. That told us there is a different way to do it and that really showed how genetics and public health can have an impact on the overall health of the population.”

Treatments and Hope for SCD

Dr. Lubin ended his talk by discussing the current management and treatment strategies for SCD patients. Early identification through universal newborn screening and family education are essential as well as preventative measures like penicillin and immunization to avoid infection.

As for therapeutic interventions, he mentioned blood transfusions, hydroxyurea treatments (which boosts the levels of healthy hemoglobin in blood cells), and bone marrow stem cell transplants. He said while bone marrow transplants have successfully treated some SCD patients, there are still many barriers to this form of treatment. Only 14% of families of SCD patients have an HLA-identical sibling donor and only 19% have an unrelated HLA-matched donor. Additionally, some doctors avoid recommending bone marrow transplants to SCD patients because of the risks for transplant rejection (graft vs. host disease) and death.

However, Dr. Lubin is hopeful that recent advances in stem cell research and genome engineering will one day make stem cell transplants the go-to treatment for SCD patients.

He ended with:

“The future of curative therapies that will have broad availability for SCD might follow advances in genomic correction of sickle mutation in hematopoietic [bone marrow] stem cells.”


Related Articles: