Stem cell stories that caught our eye: lab-grown blood stem cells and puffer fish have the same teeth stem cells as humans

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Scientists finally grow blood stem cells in the lab!

Two exciting stem cell studies broke through the politics-dominated headlines this week. Both studies, published in the journal Nature, demonstrated that human hematopoietic or blood stem cells can be grown in the lab.

This news is a big deal because scientists have yet to make bonafide blood stem cells from pluripotent stem cells or other human cells. These stem cells not only create all the cells in our blood and immune systems, but also can be used to develop therapies for patients with blood cancers and genetic blood disorders.

But to do these experiments, you need a substantial source of blood stem cells – something that has eluded scientists for decades. That’s where these two studies come to the rescue. One study was spearheaded by George Daley at the Boston Children’s Hospital in Massachusetts and the other was led by Shahin Rafii at the Weill Cornell Medical College in New York City.

Researchers have made blood stem cells and progenitor cells from pluripotent stem cells. Credit: Steve Gschmeissner Getty Images

George Daley and his team developed a strategy that matured human induced pluripotent stem cells (iPS cells) into blood-forming stem and progenitor cells. It’s a two-step process that first uses a cocktail of chemicals to make hemogenic endothelium, the embryonic tissue that generates blood stem cells. The second step involved treating these intermediate cells with a combination of seven transcription factors that directed them towards a blood stem cell fate.

These modified human blood stem cells were then transplanted into mice where they developed into blood stem cells that produced blood and immune cells. First author on the study, Ryohichi Sugimura, explained the applications that their technology could be used for in a Boston Children’s Hospital news release,

“This step opens up an opportunity to take cells from patients with genetic blood disorders, use gene editing to correct their genetic defect and make functional blood cells. This also gives us the potential to have a limitless supply of blood stem cells and blood by taking cells from universal donors. This could potentially augment the blood supply for patients who need transfusions.”

The second study by Shahin Rafii and his team at Cornell used a different strategy to generate blood-forming stem cells. Instead of genetically manipulating iPS cells, they selected a more mature cell type to directly reprogram into blood stem cells. Using four transcription factors, they successfully reprogrammed mouse endothelial cells, which line the insides of blood vessels, into blood-forming stem cells that repopulated the blood and immune systems of irradiated mice.

Raffii believe his method is simpler and more efficient than Daley’s. In coverage by Nature News, he commented,

“Using the most efficient method to generate stem cells matters because every time a gene is added to a batch of cells, a large portion of the batch fails to incorporate it and must be thrown out. There is also a risk that some cells will mutate after they are modified in the lab, and could form tumors if they are implanted into people.”

To play devil’s advocate, Daley’s technique might appeal more to some because the starting source of iPS cells is much easier to obtain and culture in the lab than endothelial cells that have to be extracted from the blood vessels of animals or people. Furthermore, Daley argued that his team’s method could “be made more efficient, and [is] less likely to spur tumor growth and other abnormalities in modified cells.”

The Nature News article compares the achievements of both studies and concluded,

“Time will determine which approach succeeds. But the latest advances have buoyed the spirits of researchers who have been frustrated by their inability to generate blood stem cells from iPS cells.”

 

Humans and puffer fish have the same tooth-making stem cells.

Here’s a fun fact for your next blind date: humans and puffer fish share the same genes that are responsible for making teeth. Scientists from the University of Sheffield in England discovered that the stem cells that make teeth in puffer fish are the same stem cells that make the pearly whites in humans. Their work was published in the journal PNAS earlier this week.

Puffer fish. Photo by pingpogz on Flickr.

But if you look at this puffer fish, you’ll see a dramatic difference between its smile and ours – their teeth look more like a beak. Research has shown that the tooth-forming stem cells in puffer fish produce tooth plates that form a beak-like structure, which helps them crush and consume their prey.

So why is this shared evolution between humans and puffer fish important when our teeth look and function so differently? The scientists behind this research believe that studying the pufferfish could unearth answers about tooth loss in humans. The lead author on the study, Dr. Gareth Fraser, concluded in coverage by Phys.org,

“Our study questioned how pufferfish make a beak and now we’ve discovered the stem cells responsible and the genes that govern this process of continuous regeneration. These are also involved in general vertebrate tooth regeneration, including in humans. The fact that all vertebrates regenerate their teeth in the same way with a set of conserved stem cells means that we can use these studies in more obscure fishes to provide clues to how we can address questions of tooth loss in humans.”

Stem cell-derived blood-brain barrier gives more complete picture of Huntington’s disease

Like a sophisticated security fence, our bodies have evolved a barrier that protects the brain from potentially harmful substances in the blood but still allows the entry of essential molecules like blood sugar and oxygen. Just like in other parts of the body, the blood vessels and capillaries in the brain are lined with endothelial cells. But in the brain, these cells form extremely tight connections with each other making it nearly impossible for most things to passively squeeze through the blood vessel wall and into the brain fluid.

BloodBrainBarrier

Compared to blood vessels in other parts of the body, brain blood vessels form a much tighter seal to protect the brain.
Image source: Dana and Chris Reeve Foundation

Recent studies have shown defects in the brain-blood barrier are associated with neurodegenerative disorders like Huntington’s disease and as a result becomes leakier. Although the debilitating symptoms of Huntington’s disease – which include involuntary movements, severe mood swings and difficulty swallowing – are primarily due to the gradual death of specific nerve cells, this breakdown in the blood-brain barrier most likely contributes to the deterioration of the Huntington’s brain.

What hasn’t been clear is if mutations in Huntingtin, the gene that is linked to Huntington’s disease, directly impact the specialized endothelial cells within the blood-brain barrier or if these specialized cells are just innocent bystanders of the destruction that occurs as Huntington’s progresses. It’s an important question to answer. If the mutations in Huntingtin directly affect the blood-brain barrier then it could provide a bigger picture of how this incurable, fatal disease works. More importantly, it may provide new avenues for therapy development.

A UC Irvine research team got to the bottom of this question with the help of induced pluripotent stem cells (iPSCs) derived from the skin cells of individuals with Huntington’s disease. Their CIRM-funded study was published this week in Cell Reports.

In a first for a neurodegenerative disease, the researchers coaxed the Huntington’s disease iPSCs in a lab dish to become brain microvascular endothelial cells (BMECs), the specialized cells responsible for forming the blood-brain barrier. The researchers found that the Huntington’s BMECs themselves were indeed dysfunctional. Compared to BMECs derived from unaffected individuals, the Huntington’s BMECs weren’t as good at making new blood vessels, and the vessels they did make were leakier. So the Huntingtin mutation in these BMECs appears to be directly responsible for the faulty blood-brain barrier.

The team dug deeper into this new insight by looking for possible differences in gene activity between the healthy and Huntington’s BMECs. They found that the Wnt group of genes, which plays an important role in the development of the blood-brain barrier, are over active in the Huntington’s BMECs. This altered Wnt activity can explain the leaky defects. In fact, the use of a drug inhibitor of Wnt fixed the defects. Dr. Leslie Thompson, the team lead, described the significance of this finding in a press release:

“Now we know there are internal problems with blood vessels in the brain. This discovery can be used for possible future treatments to seal the leaky blood vessels themselves and to evaluate drug delivery to patients with HD.”

151117_lesliethompson_05_sz-1080x720

Study leader, Leslie Thompson. Steve Zylius / UCI

A companion Cell Stem Cell report, also published this week, used the same iPSC-derived blood-brain barrier system. In that study, researchers at Cedars-Sinai pinpointed BMEC defects as the underlying cause of Allan-Herndon-Dudley syndrome, another neurologic condition that causes mental deficits and movement problems. Together these results really drive home the importance of studying the blood-brain barrier function in neurodegenerative disease.

Dr. Ryan Lim, the first author on the UC Irvine study, also points to a larger perspective on the implications of this work:

“These studies together demonstrate the incredible power of iPSCs to help us more fully understand human disease and identify the underlying causes of cellular processes that are altered.”

Stem cell stories that caught our eye: update on Capricor’s heart attack trial; lithium on the brain; and how stem cells do math

Capricor ALLSTARToday our partners Capricor Therapeutics announced that its stem cell therapy for patients who have experienced a large heart attack is unlikely to meet one of its key goals, namely reducing the scar size in the heart 12 months after treatment.

The news came after analyzing results from patients at the halfway point of the trial, six months after their treatment in the Phase 2 ALLSTAR clinical trial which CIRM was funding. They found that there was no significant difference in the reduction in scarring on the heart for patients treated with donor heart-derived stem cells, compared to patients given a placebo.

Obviously this is disappointing news for everyone involved, but we know that not all clinical trials are going to be successful. CIRM supported this research because it clearly addressed an unmet medical need and because an earlier Phase 1 study had showed promise in helping prevent decline in heart function after a heart attack.

Yet even with this failure to repeat that promise in this trial,  we learned valuable lessons.

In a news release, Dr. Tim Henry, Director of the Division of Interventional Technologies in the Heart Institute at Cedars-Sinai Medical Center and a Co-Principal Investigator on the trial said:

“We are encouraged to see reductions in left ventricular volume measures in the CAP-1002 treated patients, an important indicator of reverse remodeling of the heart. These findings support the biological activity of CAP-1002.”

Capricor still has a clinical trial using CAP-1002 to treat boys and young men developing heart failure due to Duchenne Muscular Dystrophy (DMD).

Lithium gives up its mood stabilizing secrets

As far back as the late 1800s, doctors have recognized that lithium can help people with mood disorders. For decades, this inexpensive drug has been an effective first line of treatment for bipolar disorder, a condition that causes extreme mood swings. And yet, scientists have never had a good handle on how it works. That is, until this week.

evan snyder

Evan Snyder

Reporting in the Proceedings of the National Academy of Sciences (PNAS), a research team at Sanford Burnham Prebys Medical Discovery Institute have identified the molecular basis of the lithium’s benefit to bipolar patients.  Team lead Dr. Evan Snyder explained in a press release why his group’s discovery is so important for patients:

“Lithium has been used to treat bipolar disorder for generations, but up until now our lack of knowledge about why the therapy does or does not work for a particular patient led to unnecessary dosing and delayed finding an effective treatment. Further, its side effects are intolerable for many patients, limiting its use and creating an urgent need for more targeted drugs with minimal risks.”

The study, funded in part by CIRM, attempted to understand lithium’s beneficial effects by comparing cells from patient who respond to those who don’t (only about a third of patients are responders). Induced pluripotent stem cells (iPSCs) were generated from both groups of patients and then the cells were specialized into nerve cells that play a role in bipolar disorder. The team took an unbiased approach by looking for differences in proteins between the two sets of cells.

The team zeroed in on a protein called CRMP2 that was much less functional in the cells from the lithium-responsive patients. When lithium was added to these cells the disruption in CRMP2’s activity was fixed. Now that the team has identified the molecular location of lithium’s effects, they can now search for new drugs that do the same thing more effectively and with fewer side effects.

The stem cell: a biological calculator?

math

Can stem cells do math?

Stem cells are pretty amazing critters but can they do math? The answer appears to be yes according to a fascinating study published this week in PNAS Proceedings of the National Academy of Sciences.

Stem cells, like all cells, process information from the outside through different receptors that stick out from the cells’ outer membranes like a satellite TV dish. Protein growth factors bind those receptors which trigger a domino effect of protein activity inside the cell, called cell signaling, that transfers the initial receptor signal from one protein to another. Ultimately that cascade leads to the accumulation of specific proteins in the nucleus where they either turn on or off specific genes.

Intuition would tell you that the amount of gene activity in response to the cell signaling should correspond to the amount of protein that gets into the nucleus. And that’s been the prevailing view of scientists. But the current study by a Caltech research team debunks this idea. Using real-time video microscopy filming, the team captured cell signaling in individual cells; in this case they used an immature muscle cell called a myoblast.

goentoro20170508

Behavior of cells over time after they have received a Tgf-beta signal. The brightness of the nuclei (circled in red) indicates how much Smad protein is present. This brightness varies from cell to cell, but the ratio of brightness after the signal to before the signal is about the same. Image: Goentoro lab, CalTech.

To their surprise the same amount of growth factor given to different myoblasts cells led to the accumulation of very different amounts of a protein called Smad3 in the cells’ nuclei, as much as a 40-fold difference across the cells. But after some number crunching, they discovered that dividing the amount of Smad3 after growth factor stimulation by the Smad3 amount before growth stimulation was similar in all the cells.

As team lead Dr. Lea Goentoro mentions in a press release, this result has some very important implications for studying human disease:

“Prior to this work, researchers trying to characterize the properties of a tumor might take a slice from it and measure the total amount of Smad in cells. Our results show that to understand these cells one must instead measure the change in Smad over time.”

Stem cell stories that caught our eye: better ovarian cancer drugs, creating inner ear tissue, small fish big splash

Two drugs are better than one for ovarian cancer (Karen Ring). Earlier this week, scientists from UCLA reported that a combination drug therapy could be an effective treatment for 50% of aggressive ovarian cancers. The study was published in the journal Precision Oncology and was led by Dr. Sanaz Memarzadeh.

Women with high-grade ovarian tumors have an 85% chance of tumor recurrence after treatment with a common chemotherapy drug called carboplatin. The UCLA team found in a previous study that ovarian cancer stem cells are to blame because they are resistant to carboplatin. It’s because these stem cells have an abundance of proteins called cIAPs, which prevent cell death from chemotherapy.

Ovarian+cancer+tumor+cells_mid

Ovarian cancer cells (blue) expressing cIAP protein (red) on the left are more sensitive to a combination therapy than cancer cells that don’t express the protein on the right. (UCLA Broad Stem Cell Research Center/Precision Oncology)

Memarzadeh discovered that an experimental drug called birinapant made some ovarian cancer tumors more sensitive to chemotherapy treatment by breaking down cIAPs. This gave her the idea that combining the two drugs, birinapant and carboplatin, might be a more effective strategy for treating aggressive ovarian tumors.

By treating with the two drugs simultaneously, the scientists improved the survival rate of mice with ovarian cancer. They also tested this combo drug treatment on 23 ovarian cancer cell lines derived from women with highly aggressive tumors. The treatment killed off half of the cell lines indicating that some forms of this cancer are resistant to the combination treatment.

When they measured the levels of cIAPs in the human ovarian cancer cell lines, they found that high levels of the proteins were associated with ovarian tumor cells that responded well to the combination treatment. This is exciting because it means that clinicians can analyze tumor biopsies for cIAP levels to determine whether certain ovarian tumors would respond well to combination therapy.

Memarzadeh shared her plans for future research in a UCLA news release,

“I believe that our research potentially points to a new treatment option. In the near future, I hope to initiate a phase 1/2 clinical trial for women with ovarian cancer tumors predicted to benefit from this combination therapy.”

In a first, researchers create inner ear tissue. From heart muscle to brain cells to insulin-producing cells, researchers have figured out how to make a long list of different human cell types using induced pluripotent stem cells (iPSCs) – cells taken from the body and reprogrammed into a stem cell-like state.

xdvehqvv32_actual

Human inner ear organoid with sensory hair cells (cyan) and sensory neurons (yellow). An antibody for the protein CTBP2 reveals cell nuclei as well as synapses between hair cells and neurons (magenta). | Photo: Karl Koehler

This week, a research group at the Indiana University School of Medicine successfully added inner ear cells to that list. This feat, published in Nature Biotechnology, is especially important given the fact that the inner ear is one of the few parts of the body that cannot be biopsied for further examination. With these cells in hands, new insights into the causes of hearing loss and balance disorders may be on the horizon.

The inner ear contains 75,000 sensory hair cells that convert sound waves into electrical signals to the brain. Loud noises, drug toxicity, and genetic mutations can permanently damage the hair cells leading to hearing loss and dizziness. Over 15%  of the U.S. population have some form of hearing loss and that number swells to 67% for people over 75.

Due to the complex shape of the inner ear, the team grew the iPSCs into three dimensional balls of cells rather than growing them as a flat layer of cells on a petri dish. With educated guesses sprinkled in with some trial and error, the scientists, for the time, identified a recipe of proteins that stimulated the iPSCs to transform into inner ear tissue. And like any great recipe, it wasn’t so much the ingredient list but the timing that was key:

“If you apply these signals at the wrong time you can potentially generate a brain instead of an inner ear,” first author Dr. Karl Koehler said in an interview with Gizmodo. “The real breakthrough is that we figured out the exact timing to do each one of these [protein] treatments.”

dc2bqrwilv_actual

Senior author, Eri Hashino, Ph.D., and first author, Karl R. Koehler, Ph.D. Photo: Indiana University

Careful examination shows that the tissue, referred to as organoids, not only contained the sensory hair cells of the inner ear cell but also nerve cells, or neurons, that are responsible for relaying the sound waves to the brain. Koehler explained the importance of this result in a press release:

“We also found neurons, like those that transmit signals from the ear to the brain, forming connections with sensory cells. This is an exciting feature of these organoids because both cell types are critical for proper hearing and balance.”

Though it’s still early days, these iPSC-derived inner ear organoids are a key step toward the ultimate goal of repairing hearing loss. Senior author, Dr. Eri Hashino, talked about the team’s approach to reach that goal:

“Up until now, potential drugs or therapies have been tested on animal cells, which often behave differently from human cells. We hope to discover new drugs capable of helping regenerate the sound-sending hair cells in the inner ear of those who have severe hearing problems.”

This man’s research is no fish tale
And finally, we leave you this week with a cool article and video by STAT. It features Dr. Leonard Zon of Harvard University and his many, many tanks full of zebrafish. This little fish has made a huge splash in understanding human development and disease. But don’t take my word for it, watch the video!

Stem cell-derived, 3D brain tissue reveals autism insights

Studying human brain disorders is one of the most challenging fields in biomedical research. Besides the fact that the brain is incredibly complex, it’s just plain difficult to peer into it.

It’s neither practical nor ethical to access the cells of the adult brain. Patrick J. Lynch, medical illustrator; C. Carl Jaffe, MD, cardiologist.

For one thing, it’s not practical, let alone ethical, to drill into an affected person’s skull and collect brain cells to learn about their disease. Another issue is that the faulty cellular and molecular events that cause brain disorders are, in many cases, thought to trace back to fetal brain development before a person is even born. So, just like a detective looking for evidence at the scene of a crime, neurobiologists can only piece together clues after the disease has already occurred.

The good news is these limitations are falling away thanks to human induced pluripotent stem cells (iPSCs), which are generated from an individual’s easily accessible skin cells. Last week’s CIRM-funded research report out of Stanford University is a great example of how this method is providing new human brain insights.

Using brain tissue grown from patient-derived iPSCs, Dr. Sergiu Pasca and his team recreated the types of nerve cell circuits that form during the late stages of pregnancy in the fetal cerebral cortex, the outer layer of the brain that is responsible for functions including memory, language and emotion. With this system, they observed irregularities in the assembly of brain circuitry that provide new insights into the cellular and molecular causes of neuropsychiatric disorders like autism.

Recreating interactions between different regions of the development from skin-derived iPSCs
Image: Sergui Pasca Lab, Stanford University

Holy Brain Balls! Recreating the regions of our brain with skin cells
Two years ago, Pasca’s group figured out a way grow iPSCs into tiny, three-dimensional balls of cells that mimic the anatomy of the cerebral cortex. The team showed that these brain spheres contain the expected type of nerve cells, or neurons, as well as other cells that support neuron function.

Still, the complete formation of the cortex’s neuron circuits requires connections with another type of neuron that lies in a separate region of the brain. These other neurons travel large distances in a developing fetus’ brain over several months to reach the cortical cortex. Once in place, these migrating neurons have an inhibitory role and can block the cortical cortex nerve signals. Turning off a nerve signal is just as important as turning one on. In fact, imbalances in these opposing on and off nerve signals are suspected to play a role in epilepsy and autism.

So, in the current Nature study, Pasca’s team devised two different iPSC-derived brain sphere recipes: one that mimics the neurons found in the cortical cortex and another that mimics the region that contains the inhibitory neurons. Then the researchers placed the two types of spheres in the same lab dish and within three days, they spontaneously fused together.

Under video microscopy, the migration of the inhibitory neurons into the cortical cortex was observed. In cells derived from healthy donors, the migration pattern of inhibitory neurons looked like a herky-jerkey car being driven by a student driver: the neurons would move toward the cortical cortex sphere but suddenly stop for a while and then start their migration again.

“We’ve never been able to recapitulate these human-brain developmental events in a dish before,” said Pasca in a press release, “the process happens in the second half of pregnancy, so viewing it live is challenging. Our method lets us see the entire movie, not just snapshots.”

New insights into Timothy Syndrome may also uncover molecular basis of autism
To study the migration of the inhibitory neurons in the context of a neuropsychiatric disease, iPSCs were generated from skin samples of patients with Timothy syndrome, a rare genetic disease which carries a wide-range of symptoms including autism as well as heart defects.

The formation of brain spheres from the patient-derived iPSCs proceeded normally. But the next part of the experiment revealed an abnormal migration pattern of the neurons.  The microscopy movies showed that the start and stop behavior of neurons happened more frequently but the speed of the migration slowed. The fascinating video below shows the differences in the migration patterns of a healthy (top) versus a Timothy sydrome-derived neuron (bottom). The end result was a disruption of the typically well-organized neuron circuitry.

Now, the gene that’s mutated in Timothy Syndrome is responsible for the production of a protein that helps shuttle calcium in and out of neurons. The flow of calcium is critical for many cell functions and adding drugs that slow down this calcium flux restored the migration pattern of the neurons. So, the researchers can now zero in their studies on this direct link between the disease-causing mutation and a specific breakdown in neuron function.

The exciting possibility is that, because this system is generated from a patient’s skin cells, experiments could be run to precisely understand each individual’s neuropsychiatric disorder. Pasca is eager to see what new insights lie ahead:

“Our method of assembling and carefully characterizing neuronal circuits in a dish is opening up new windows through which we can view the normal development of the fetal human brain. More importantly, it will help us see how this goes awry in individual patients.”

Stem cell stories that caught our eye: spinal cord injury trial keeps pace; SMART cells make cartilage and drugs

CIRM-funded spinal cord injury trial keeping a steady pace

Taking an idea for a stem cell treatment and developing it into a Food and Drug Administration-approved cell therapy is like running the Boston Marathon because it requires incremental progress rather than a quick sprint. Asterias Biotherapeutics continues to keep a steady pace and to hit the proper milestones in its race to develop a stem cell-based treatment for acute spinal cord injury.


Just this week in fact, the company announced an important safety milestone for its CIRM-funded SciStar clinical trial. This trial is testing the safety and effectiveness of AST-OPC1, a human embryonic stem cell-derived cell therapy that aims to regenerate some of the lost movement and feeling resulting from spinal cord injuries to the neck.

Periodically, an independent safety review board called the Data Monitoring Committee (DMC) reviews the clinical trial data to make sure the treatment is safe in patients. That’s exactly what the DMC concluded as its latest review. They recommended that treatments with 10 and 20 million cell doses should continue as planned with newly enrolled clinical trial participants.

About a month ago, Asterias reported that six of the six participants who had received a 10 million cell dose – which is transplanted directly into the spinal cord at the site of injury – have shown improvement in arm, hand and finger function nine months after the treatment. These outcomes are better than what would be expected by spontaneous recovery often observed in patients without stem cell treatment. So, we’re hopeful for further good news later this year when Asterias expects to provide more safety and efficacy data on participants given the 10 million cell dose as well as the 20 million cell dose.

It’s a two-fer: SMART cells that make cartilage and release anti-inflammation drug
“It’s a floor wax!”….“No, it’s a dessert topping!”
“Hey, hey calm down you two. New Shimmer is a floor wax and a dessert topping!”

Those are a few lines from the classic Saturday Night Live skit that I was reminded of when reading about research published yesterday in Stem Cell Reports. The clever study generated stem cells that not only specialize into cartilage tissue that could help repair arthritic joints but the cells also act as a drug dispenser that triggers the release of a protein that dampens inflammation.

Using CRISPR technology, a team of researchers led by Farshid Guilak, PhD, at Washington University School of Medicine in St. Louis, rewired stem cells’ genetic circuits to produce an anti-inflammatory arthritis drug when the cells encounter inflammation. The technique eventually could act as a vaccine for arthritis and other chronic conditions. Image: ELLA MARUSHCHENKO

The cells were devised by a research team at Washington University School of Medicine in St. Louis. They started out with skin cells collected from the tails of mice. Using the induced pluripotent stem cell technique, the skin cells were reprogrammed into an embryonic stem cell-like state. Then came the ingenious steps. The team used the CRISPR gene-editing method to create a negative feedback loop in the cells’ inflammation response. They removed a gene that is activated by the potent inflammatory protein, TNF-alpha and replaced it with a gene that blocks TNF-alpha. Analogous experiments were carried out with another protein called IL-1.

Rheumatoid arthritis often affects the small joints causing painful swelling and disfigurement. Image: Wikipedia

Now, TNF-alpha plays a key role in triggering inflammation in arthritic joints. But this engineered cell, in the presence of TNF-alpha, activates the production of a protein that inhibits the actions of TNF-alpha. Then the team converted these stem cells into cartilage tissue and they went on to show that the cartilage was indeed resistant to inflammation. Pretty smart, huh? In fact, the researchers called them SMART cells for “Stem cells Modified for Autonomous Regenerative Therapy.” First author Dr. Jonathan Brunger summed up the approach succinctly in a press release:

“We hijacked an inflammatory pathway to create cells that produced a protective drug.”

This type of targeted treatment of arthritis would have a huge advantage over current anti-TNF-alpha therapies. Arthritis drugs like Enbrel, Humira and Remicade are very effective but they block the immune response throughout the body which carries an increased risk for serious infections and even cancer.

The team is now testing the cells in animal models of rheumatoid arthritis as well as other inflammation disorders. Those results will be important to determine whether or not this approach can work in a living animal. But senior Dr. Farshid Guilak also has an eye on future applications of SMART cells:

“We believe this strategy also may work for other systems that depend on a feedback loop. In diabetes, for example, it’s possible we could make stem cells that would sense glucose and turn on insulin in response. We are using pluripotent stem cells, so we can make them into any cell type, and with CRISPR, we can remove or insert genes that have the potential to treat many types of disorders.”

Knocking out sexually transmitted disease with stem cells and CRISPR gene editing

When used in tandem, stem cells and gene editing make a powerful pair in the development of cell therapies for genetic diseases like sickle cell anemia and bubble baby disease. But the applications of these cutting-edge technologies go well beyond cell therapies.

This week, researchers at the Wellcome Trust Sanger Institute in the UK and the University of British Columbia (UBC) in Canada, report their use of induced pluripotent stem cells (iPSCs) and the CRISPR gene editing to better understand chlamydia, a very common sexually transmitted disease. And in the process, the researchers gained insights for developing new drug treatments.

BodyChlamydia

Human macrophage, a type of white blood cell, interacting with a Chlamydia trachomatis bacteria cell. Image: Sanger Institute / Genome Research Limited

Chlamydia is caused by infection with the bacteria Chlamydia trachomatis. According to the Centers for Disease Control (CDC), there were over 1.5 million cases of Chlamydia reported in the U.S. in 2015. And there are thought to be almost 3 million new cases each year. Men with Chlamydia usually do not face many health issues. Women, on the other hand, can suffer serious health complications like pelvic inflammatory disease and infertility.

Although it’s easily treatable with antibiotics, the disease often goes unnoticed because infected people may not show symptoms. And because of the rising fear of antibiotic-resistant bacteria, there’s a need to develop new types of drugs to treat Chlamydia.

To tackle this challenge, the research teams focused first on better understanding how the bacteria infects the human immune system. As first author Dr. Amy Yeung from the Wellcome Trust Sanger Institute explained in a press release, researchers knew they were up against difficult to treat foe:

picture-ay1

Amy Yeung

“Chlamydia is tricky to study because it can permeate and hide in macrophages [a type of white blood cell] where it is difficult to reach with antibiotics. Inside the macrophage, one or two chlamydia cells can replicate into hundreds in just a day or two, before bursting out to spread the infection.”

In the study, published in Nature Communications, the teams chose to examine human macrophages derived from iPSCs. This decision had a few advantages over previous studies.  Most Chlamydia studies up until this point had either used macrophages from mice, which don’t always accurately reflect what’s going on in the human immune system, or human macrophage cell lines, which have genetic abnormalities that allow them to divide indefinitely.

With these human iPSC-derived macrophages, the team then used CRISPR gene editing technology to systematically delete, or “knockout”, genes that may play a role in Chlamydia infection. Lead author Dr. Robert Hancock from UBC described the power of this approach:

about-bob-200x200

Robert Hancock

“We can knock out specific genes in stem cells and look at how the gene editing influences the resulting macrophages and their interaction with chlamydia. We’re effectively sieving through the genome to find key players and can now easily see genes that weren’t previously thought to be involved in fighting the infection.”

In fact, they found two genes that appear to play an important role in Chlamydia infection. When they knocked out either the IRF5 or IL-10RA gene, the macrophages were much more vulnerable to infection. The team is now eager to examine these two genes as possible targets for novel Chlamyia drug treatments. But as Dr. Gordon Dougan –the senior author from the Sanger Institute – explains, these studies could be far-reaching:

picture-gd1

Gordon Dougan

“This system can be extended to study other pathogens and advance our understanding of the interactions between human hosts and infections. We are starting to unravel the role our genetics play in battling infections, such as chlamydia, and these results could go towards designing more effective treatments in the future.”

Stem cell stories that caught our eye: developing the nervous system, aging stem cells and identical twins not so identical

Here are the stem cell stories that caught our eye this week. Enjoy!

New theory for how the nervous system develops.

There’s a new theory on the block for how the nervous system is formed thanks to a study published yesterday by UCLA stem cell scientists in the journal Neuron.

The theory centers around axons, thin extensions projecting from nerve cells that transmit electrical signals to other cells in the body. In the developing nervous system, nerve cells extend axons into the brain and spinal cord and into our muscles (a process called innervation). Axons are guided to their final destinations by different chemicals that tell axons when to grow, when to not grow, and where to go.

Previously, scientists believed that one of these important chemical signals, a protein called netrin 1, exerted its influence over long distances in a gradient-like fashion from a structure in the developing nervous system called the floor plate. You can think of it like a like a cell phone tower where the signal is strongest the closer you are to the tower but you can still get some signal even when you’re miles away.

The UCLA team, led by senior author and UCLA professor Dr. Samantha Butler, questioned this theory because they knew that neural progenitor cells, which are the precursors to nerve cells, produce netrin1 in the developing spinal cord. They believed that the netrin1 secreted from these progenitor cells also played a role in guiding axon growth in a localized manner.

To test their hypothesis, they studied neural progenitor cells in the developing spines of mouse embryos. When they eliminated netrin1 from the neural progenitor cells, the axons went haywire and there was no rhyme or reason to their growth patterns.

Left: axons (green, pink, blue) form organized patterns in the normal developing mouse spinal cord. Right: removing netrin1 results in highly disorganized axon growth. (UCLA Broad Stem Cell Research Center/Neuron)

A UCLA press release explained what the scientists discovered next,

“They found that neural progenitors organize axon growth by producing a pathway of netrin1 that directs axons only in their local environment and not over long distances. This pathway of netrin1 acts as a sticky surface that encourages axon growth in the directions that form a normal, functioning nervous system.”

Like how ants leave chemical trails for other ants in their colony to follow, neural progenitor cells leave trails of netrin1 in the spinal cord to direct where axons go. The UCLA team believes they can leverage this newfound knowledge about netrin1 to make more effective treatments for patients with nerve damage or severed nerves.

In future studies, the team will tease apart the finer details of how netrin1 impacts axon growth and how it can be potentially translated into the clinic as a new therapeutic for patients. And from the sounds of it, they already have an idea in mind:

“One promising approach is to implant artificial nerve channels into a person with a nerve injury to give regenerating axons a conduit to grow through. Coating such nerve channels with netrin1 could further encourage axon regrowth.”

Age could be written in our stem cells.

The Harvard Gazette is running an interesting series on how Harvard scientists are tackling issues of aging with research. This week, their story focused on stem cells and how they’re partly to blame for aging in humans.

Stem cells are well known for their regenerative properties. Adult stem cells can rejuvenate tissues and organs as we age and in response to damage or injury. However, like most house hold appliances, adult stem cells lose their regenerative abilities or effectiveness over time.

Dr. David Scadden, co-director of the Harvard Stem Cell Institute, explained,

“We do think that stem cells are a key player in at least some of the manifestations of age. The hypothesis is that stem cell function deteriorates with age, driving events we know occur with aging, like our limited ability to fully repair or regenerate healthy tissue following injury.”

Harvard scientists have evidence suggesting that certain tissues, such as nerve cells in the brain, age sooner than others, and they trigger other tissues to start the aging process in a domino-like effect. Instead of treating each tissue individually, the scientists believe that targeting these early-onset tissues and the stem cells within them is a better anti-aging strategy.

David Sadden, co-director of the Harvard Stem Cell Institute.
(Jon Chase/Harvard Staff Photographer)

Dr. Scadden is particularly interested in studying adult stem cell populations in aging tissues and has found that “instead of armies of similarly plastic stem cells, it appears there is diversity within populations, with different stem cells having different capabilities.”

If you lose the stem cell that’s the best at regenerating, that tissue might age more rapidly.  Dr. Scadden compares it to a game of chess, “If we’re graced and happen to have a queen and couple of bishops, we’re doing OK. But if we are left with pawns, we may lose resilience as we age.”

The Harvard Gazette piece also touches on a changing mindset around the potential of stem cells. When stem cell research took off two decades ago, scientists believed stem cells would grow replacement organs. But those days are still far off. In the immediate future, the potential of stem cells seems to be in disease modeling and drug screening.

“Much of stem cell medicine is ultimately going to be ‘medicine,’” Scadden said. “Even here, we thought stem cells would provide mostly replacement parts.  I think that’s clearly changed very dramatically. Now we think of them as contributing to our ability to make disease models for drug discovery.”

I encourage you to read the full feature as I only mentioned a few of the highlights. It’s a nice overview of the current state of aging research and how stem cells play an important role in understanding the biology of aging and in developing treatments for diseases of aging.

Identical twins not so identical (Todd Dubnicoff)

Ever since Takahashi and Yamanaka showed that adult cells could be reprogrammed into an embryonic stem cell-like state, researchers have been wrestling with a key question: exactly how alike are these induced pluripotent stem cells (iPSCs) to embryonic stem cells (ESCs)?

It’s an important question to settle because iPSCs have several advantages over ESCs. Unlike ESCs, iPSCs don’t require the destruction of an embryo so they’re mostly free from ethical concerns. And because they can be derived from a patient’s cells, if iPSC-derived cell therapies were given back to the same patient, they should be less likely to cause immune rejection. Despite these advantages, the fact that iPSCs are artificially generated by the forced activation of specific genes create lingering concerns that for treatments in humans, delivering iPSC-derived therapies may not be as safe as their ESC counterparts.

Careful comparisons of DNA between iPSCs and ESCs have shown that they are indeed differences in chemical tags found on specific spots on the cell’s DNA. These tags, called epigenetic (“epi”, meaning “in addition”) modifications can affect the activity of genes independent of the underlying genetic sequence. These variations in epigenetic tags also show up when you compare two different preparations, or cell lines, of iPSCs. So, it’s been difficult for researchers to tease out the source of these differences. Are these differences due to the small variations in DNA sequence that are naturally seen from one cell line to the other? Or is there some non-genetic reason for the differences in the iPSCs’ epigenetic modifications?

Marian and Vivian Brown, were San Francisco’s most famous identical twins. Photo: Christopher Michel

A recent CIRM-funded study by a Salk Institute team took a clever approach to tackle this question. They compared epigenetic modifications between iPSCs derived from three sets of identical twins. They still found several epigenetic variations between each set of twins. And since the twins have identical DNA sequences, the researchers could conclude that not all differences seen between iPSC cell lines are due to genetics. Athanasia Panopoulos, a co-first author on the Cell Stem Cell article, summed up the results in a press release:

“In the past, researchers had found lots of sites with variations in methylation status [specific term for the epigenetic tag], but it was hard to figure out which of those sites had variation due to genetics. Here, we could focus more specifically on the sites we know have nothing to do with genetics. The twins enabled us to ask questions we couldn’t ask before. You’re able to see what happens when you reprogram cells with identical genomes but divergent epigenomes, and figure out what is happening because of genetics, and what is happening due to other mechanisms.”

With these new insights in hand, the researchers will have a better handle on interpreting differences between individual iPSC cell lines as well as their differences with ESC cell lines. This knowledge will be important for understanding how these variations may affect the development of future iPSC-based cell therapies.

Stem Cell Stories That Caught Our Eye: Free Patient Advocate Event in San Diego, and new clues on how to fix muscular dystrophy and Huntington’s disease

UCSD Patient Advocate mtg instagram

Stem cell research is advancing so fast that it’s sometimes hard to keep up. That’s one of the reasons we have our Friday roundup, to let you know about some fascinating research that came across our desk during the week that you might otherwise have missed.

Of course, another way to keep up with the latest in stem cell research is to join us for our free Patient Advocate Event at UC San Diego next Thursday, April 20th from 12-1pm.  We are going to talk about the progress being made in stem cell research, the problems we still face and need help in overcoming, and the prospects for the future.

We have four great speakers:

  • Catriona Jamieson, Director of the CIRM UC San Diego Alpha Stem Cell Clinic and an expert on cancers of the blood
  • Jonathan Thomas, PhD, JD, Chair of CIRM’s Board
  • Jennifer Briggs Braswell, Executive Director of the Sanford Stem Cell Clinical Center
  • David Higgins, Patient Advocate for Parkinson’s on the CIRM Board

We will give updates on the exciting work taking place at UCSD and the work that CIRM is funding. We have also set aside some time to get your thoughts on how we can improve the way we work and, of course, answer your questions.

What: Stem Cell Therapies and You: A Special Patient Advocate Event

When: Thursday, April 20th 12-1pm

Where: The Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037

Why: Because the people of California have a right to know how their money is helping change the face of regenerative medicine

Who: This event is FREE and open to everyone.

We have set up an EventBrite page for you to RSVP and let us know if you are coming. And, of course, feel free to share this with anyone you think might be interested.

This is the first of a series of similar Patient Advocate Update meetings we plan on holding around California this year. We’ll have news on other locations and dates shortly.

 

Fixing a mutation that causes muscular dystrophy (Karen Ring)

It’s easy to take things for granted. Take your muscles for instance. How often do you think about them? (Don’t answer this if you’re a body builder). Daily? Monthly? I honestly don’t think much about my muscles unless I’ve injured them or if they’re sore from working out.

duchennes-cardiomyocytes-body

Heart muscle cells (green) that don’t have dystrophin protein (Photo; UT Southwestern)

But there are people in this world who think about their muscles or their lack of them every day. They are patients with a muscle wasting disease called Duchenne muscular dystrophy (DMD). It’s the most common type of muscular dystrophy, and it affects mainly young boys – causing their muscles to progressively weaken to the point where they cannot walk or breathe on their own.

DMD is caused by mutations in the dystrophin gene. These mutations prevent muscle cells from making dystrophin protein, which is essential for maintaining muscle structure. Scientists are using gene editing technologies to find and fix these mutations in hopes of curing patients of DMD.

Last year, we blogged about a few of these studies where different teams of scientists corrected dystrophin mutations using CRISPR/Cas9 gene editing technology in human cells and in mice with DMD. One of these teams has recently followed up with a new study that builds upon these earlier findings.

Scientists from UT Southwestern are using an alternative form of the CRISPR gene editing complex to fix dystrophin mutations in both human cells and mice. This alternative CRISPR complex makes use of a different cutting enzyme, Cpf1, in place of the more traditionally used Cas9 protein. It’s a smaller protein that the scientists say can get into muscle cells more easily. Cpf1 also differs from Cas9 in what DNA nucleotide sequences it recognizes and latches onto, making it a new tool in the gene editing toolbox for scientists targeting DMD mutations.

gene-edited-cardiomyocytes-body.jpg

Gene-edited heart muscle cells (green) that now express dystrophin protein (Photo: UT Southwestern)

Using CRISPR/Cpf1, the scientists corrected the most commonly found dystrophin mutation in human induced pluripotent stem cells derived from DMD patients. They matured these corrected stem cells into heart muscle cells in the lab and found that they expressed the dystrophin protein and functioned like normal heart cells in a dish. CRISPR/Cpf1 also corrected mutations in DMD mice, which rescued dystrophin expression in their muscle tissues and some of the muscle wasting symptoms caused by the disease.

Because the dystrophin gene is one of the longest genes in our genome, it has more locations where DMD-causing mutations could occur. The scientists behind this study believe that CRISPR/Cpf1 offers a more flexible tool for targeting different dystrophin mutations and could potentially be used to develop an effective gene therapy for DMD.

Senior author on the study, Dr. Eric Olson, provided this conclusion about their research in a news release by EurekAlert:

“CRISPR-Cpf1 gene-editing can be applied to a vast number of mutations in the dystrophin gene. Our goal is to permanently correct the underlying genetic causes of this terrible disease, and this research brings us closer to realizing that end.”

 

A cellular traffic jam is the culprit behind Huntington’s disease (Todd Dubnicoff)

Back in the 1983, the scientific community cheered the first ever mapping of a genetic disease to a specific area on a human chromosome which led to the isolation of the disease gene in 1993. That disease was Huntington’s, an inherited neurodegenerative disorder that typically strikes in a person’s thirties and leads to death about 10 to 15 years later. Because no effective therapy existed for the disease, this discovery of Huntingtin, as the gene was named, was seen as a critical step toward a better understand of Huntington’s and an eventual cure.

But flash forward to 2017 and researchers are still foggy on how mutations in the Huntingtin gene cause Huntington’s. New research, funded in part by CIRM, promises to clear some things up. The report, published this week in Neuron, establishes a connection between mutant Huntingtin and its impact on the transport of cell components between the nucleus and cytoplasm.

Roundup Picture1

The pores in the nuclear envelope allows proteins and molecules to pass between a cell’s nucleus and it’s cytoplasm. Image: Blausen.com staff (2014).

To function smoothly, a cell must be able to transport proteins and molecules in and out of the nucleus through holes called nuclear pores. The research team – a collaboration of scientists from Johns Hopkins University, the University of Florida and UC Irvine – found that in nerve cells, the mutant Huntingtin protein clumps up and plays havoc on the nuclear pore structure which leads to cell death. The study was performed in fly and mouse models of HD, in human HD brain samples as well as HD patient nerve cells derived with the induced pluripotent stem cell technique – all with this same finding.

Roundup Picture2

Huntington’s disease is caused by the loss of a nerve cells called medium spiny neurons. Image: Wikimedia commons

By artificially producing more of the proteins that make up the nuclear pores, the damaging effects caused by the mutant Huntingtin protein were reduced. Similar results were seen using drugs that help stabilize the nuclear pore structure. The implications of these results did not escape George Yohrling, a senior director at the Huntington’s Disease Society of America, who was not involved in the study. Yohrling told Baltimore Sun reporter Meredith Cohn:

“This is very exciting research because we didn’t know what mutant genes or proteins were doing in the body, and this points to new areas to target research. Scientists, biotech companies and pharmaceutical companies could capitalize on this and maybe develop therapies for this biological process”,

It’s important to temper that excitement with a reality check on how much work is still needed before the thought of clinical trials can begin. Researchers still don’t understand why the mutant protein only affects a specific type of nerve cells and it’s far from clear if these drugs would work or be safe to use in the context of the human brain.

Still, each new insight is one step in the march toward a cure.

How Parkinson’s disease became personal for one stem cell researcher

April is Parkinson’s disease Awareness Month. This year the date is particularly significant because 2017 is the 200th anniversary of the publication of British apothecary James Parkinson’s “An Essay on the Shaking Palsy”, which is now recognized as a seminal work in describing the disease.

Schuele_headshotTo mark the occasion we talked with Dr. Birgitt Schuele, Director Gene Discovery and Stem Cell Modeling at the Parkinson’s Institute and Clinical Center in Sunnyvale, California. Dr. Schuele recently received funding from CIRM for a project using new gene-editing technology to try and halt the progression of Parkinson’s.

 

 

What got you interested in Parkinson’s research?

People ask if I have family members with Parkinson’s because a lot of people get into this research because of a family connection, but I don’t.  I was always excited by neuroscience and how the brain works, and I did my medical residency in neurology and had a great mentor who specialized in the neurogenetics of Parkinson’s. That helped fuel my interest in this area.

I have been in this field for 15 years, and over time I have gotten to know a lot of people with Parkinson’s and they have become my friends, so now I’m trying to find answers and also a cure for Parkinson’s. For me this has become personal.

I have patients that I talk to every couple of months and I can see how their disease is progressing, and especially for people with early or young onset Parkinson’s. It’s devastating. It has a huge effect on the person and their family, and on relationships, even how they have to talk to their kids about their risk of getting the disease themselves. It’s hard to see that and the impact it has on people’s lives. And because Parkinson’s is progressive, I get to see, over the years, how it affects people, it’s very hard.

Talk about the project you are doing that CIRM is funding

It’s very exciting. The question for Parkinson’s is how do you stop disease progression, how do you stop the neurons from dying in areas affected by the disease. One protein, identified in 1997 as a genetic form of Parkinson’s, is alpha-synuclein. We know from studying families that have Parkinson’s that if you have too much alpha-synuclein you get early onset, a really aggressive form of Parkinson’s.

I followed a family that carries four copies of this alpha-synuclein gene (two copies is the normal figure) and the age of onset in this family was in their mid 30’s. Last year I went to a funeral for one of these family members who died from Parkinson’s at age 50.

We know that this protein is bad for you, if you have too much it kills brains cells. So we have an idea that if you lower levels of this protein it might be an approach to stop or shield those cells from cell death.

We are using CRISPR gene editing technology to approach this. In the Parkinson’s field this idea of down-regulation of alpha-synuclein protein isn’t new, but previous approaches worked at the protein level, trying to get rid of it by using, for example, immunotherapy. But instead of attacking the protein after it has been produced we are starting at the genomic level. We want to use CRISPR as a way to down-regulate the expression of the protein, in the same way we use a light dimmer to lower the level of light in a room.

But this is a balancing act. Too much of the protein is bad, but so is too little. We know if you get rid of the protein altogether you get negative effects, you cause complications. So we want to find the right level and that’s complex because the right level might vary from person to person.

We are starting with the most extreme levels, with people who have twice as much of this protein as is normal. Once we understand that better, then we can look at people who have levels that are still higher than normal but not at the upper levels we see in early-onset Parkinson’s. They have more subtle changes in their production or expression of this protein. It’s a little bit of a juggling act and it might be different for different patients. We start with the most severe ones and work our way to the most common ones.

One of the frustrations I often hear from patients is that this is all taking so long. Why is that?

Parkinson’s has been overall frustrating for researchers as well. Around 100 years ago, Dr. Lewy first described the protein deposits and the main neuropathology in Parkinson’s. About 20 years ago, mutations in the alpha-synuclein gene were discovered, and now we know approximately 30 genes that are associated with, or can cause Parkinson’s. But it was all very descriptive. It told us what is going on but not why.

Maybe we thought it was straight forward and maybe researchers only focused on what we knew at that point. In 1957, the neurotransmitter dopamine was identified and since the 1960s people have focused on Parkinson’s as a dopamine-deficient problem because we saw the amazing effects L-Dopa had on patients and how it could help ease their symptoms.

But I would say in the last 15 years we have looked at it more closely and realized it’s more complicated than that. There’s also a loss of sense of smell, there’s insomnia, episodes of depression, and other things that are not physical symptoms. In the last 10 years or so we have really put the pieces together and now see Parkinson’s as a multi-system disease with neuronal cell death and specific protein deposits called Lewy Bodies. These Lewy Bodies contain alpha-synuclein and you find them in the brain, the gut and the heart and these are organs people hadn’t looked at because no one made the connection that constipation or depression could be linked to the disease. It turns out that Parkinson’s is much more complicated than just a problem in one particular region of the brain.

The other reason for slow progress is that we don’t have really good models for the disease that are predictive for clinical outcomes. This is why probably many clinical trials in the neurodegenerative field have failed to date. Now we have human induced pluripotent stem cells (iPSCs) from people with Parkinson’s, and iPSC-derived neurons allow us to better model the disease in the lab, and understand its underlying mechanisms  more deeply. The technology has now advanced so that the ability to differentiate these cells into nerve cells is better, so that you now have iPSC-derived neurons in a dish that are functionally active, and that act and behave like dopamine-producing neurons in the brain. This is an important advance.

Will this lead to a clinical trial?

That’s the idea, that’s our hope.

We are working with professor Dr. Deniz Kirik at the University of Lund in Sweden. He’s an expert in the field of viral vectors that can be used in humans – it’s a joint grant between us – and so what we learn from the human iPS cultures, he’ll transfer to an animal model and use his gene vector technology to see if we can see the same effects in vivo, in mice.

We are using a very special Parkinson’s mouse model – developed at UC San Francisco – that has the complete human genomic structure of the alpha-synuclein gene. If all goes well, we hope that ultimately we could be ready in a couple of years to think about preclinical testing and then clinical trials.

What are your hopes for the future?

My hope is that I can contribute to stopping disease progression in Parkinson’s. If we can develop a drug that can get rid of accumulated protein in someone’s brain that should stop the cells from dying. If someone has early onset PD and a slight tremor and minor walking problems, stopping the disease and having a low dose of dopamine therapy to control symptoms is almost a cure.

The next step is to develop better biomarkers to identify people at risk of developing Parkinson’s, so if you know someone is a few years away from developing symptoms, and you have the tools in place, you can start treatment early and stop the disease from kicking in, even before you clinically have symptoms.

Thinking about people who have been diagnosed with a disease, who are ten years into the disease, who already have side effects from the disease, it’s a little harder to think of regenerative medicine, using embryonic or iPSCs for this. I think that it will take longer to see results with this approach, but that’s the long-term hope for the future. There are many  groups working in this space, which is critical to advance the field.

Why is Parkinson’s Awareness Month important?

It’s important because, while a lot of people know about the disease, there are also a lot of misconceptions about Parkinson’s.

Parkinson’s is confused with Alzheimer’s or dementia and cognitive problems, especially the fact that it’s more than just a gait and movement problem, that it affects many other parts of the body too.