Brain organoids in a petri dish: photo courtesy UCSD
For several years, researchers have been able to take stem cells and use them to make three dimensional structures called organoids. These are a kind of mini organ that scientists can then use to study what happens in the real thing. For example, creating kidney organoids to see how kidney disease develops in patients.
Scientists can do the same with brain cells, creating clumps
of cells that become a kind of miniature version of parts of the brain. These
organoids can’t do any of the complex things our brains do – such as thinking –
but they do serve as useful physical models for us to use in trying to develop
a deeper understanding of the brain.
Now Alysson Muotri and his team at UC San Diego – in
a study supported by two
grants from CIRM – have taken the science one step further, developing
brain organoids that allow us to measure the level of electrical activity they
generate, and then compare it to the electrical activity seen in the developing
brain of a fetus. That last sentence might cause some people to say “What?”, but
this is actually really cool science that could help us gain a deeper
understanding of how brains develop and come up with new ways to treat problems
in the brain caused by faulty circuitry, such as autism or schizophrenia.
The team developed new, more effective methods of growing
clusters of the different kinds of cells found in the brain. They then placed
them on a multi-electrode array, a kind of muffin tray that could measure
electrical impulses. As they fed the cells and increased the number of cells in
the trays they were able to measure changes in the electrical impulses they
gave off. The cells went from producing 3,000 spikes a minute to 300,000 spikes
a minute. This is the first time this level of activity has been achieved in a
cell-based laboratory model. But that’s not all.
When they further analyzed the activity of the organoids, they found there were some similarities to the activity seen in the brains of premature babies. For instance, both produced short bursts of activity, followed by a period of inactivity.
Alysson Muotri
In a news
release Muotri says they were surprised by the finding:
“We couldn’t believe it at first — we
thought our electrodes were malfunctioning. Because the data were so striking,
I think many people were kind of skeptical about it, and understandably so.”
Muotri knows that this research –
published in the journal Cell Stem Cell – raises ethical issues and he is
quick to say that these organoids are nothing like a baby’s brain, that they differ
in several critical ways. The organoids are tiny, not just in size but also in
the numbers of cells involved. They also don’t have blood vessels to keep them
alive or help them grow and they don’t have any ability to think.
“They are far from being functionally
equivalent to a full cortex, even in a baby. In fact, we don’t yet have a way
to even measure consciousness or sentience.”
What these organoids do have is the ability to help us look
at the structure and activity of the brain in ways we never could before. In
the past researchers depended on mice or other animals to test new ideas or
therapies for human diseases or disorders. Because our brains are so different
than animal brains those approaches have had limited results. Just think about
how many treatments for Alzheimer’s looked promising in animal models but
failed completely in people.
These new organoids allow us to explore how new therapies
might work in the human brain, and hopefully increase our ability to develop
more effective treatments for conditions as varied as epilepsy and autism.
CIRM’s mission is very simple: to accelerate stem cell treatments to patients with unmet medical needs. Anne Klein’s son, Everett, was a poster boy for that statement. Born with a fatal immune disorder Everett faced a bleak future. But Anne and husband Brian were not about to give up. The following story is one Anne wrote for Parents magazine. It’s testament to the power of stem cells to save lives, but even more importantly to the power of love and the determination of a family to save their son.
My Son Was Born With ‘Bubble Boy’ Disease—But A Gene Therapy Trial Saved His Life
Everett Schmitt. Photo: Meg Kumin
I wish more than anything that my son Everett had not been born with severe combined immunodeficiency (SCID). But I know he is actually one of the lucky unlucky ones. By Anne Klein
As a child in the ’80s, I watched a news story about David Vetter. David was known as “the boy in the bubble” because he was born with severe combined immunodeficiency (SCID), a rare genetic disease that leaves babies with very little or no immune system. To protect him, David lived his entire life in a plastic bubble that kept him separated from a world filled with germs and illnesses that would have taken his life—likely before his first birthday.
I was struck by David’s story. It was heartbreaking and seemed so otherworldly. What would it be like to spend your childhood in an isolation chamber with family, doctors, reporters, and the world looking in on you? I found it devastating that an experimental bone marrow transplant didn’t end up saving his life; instead it led to fatal complications. His mother, Carol Ann Demaret, touched his bare hand for the first and last time when he was 12 years old.
I couldn’t have known that almost 30 years later, my own son, Everett, would be born with SCID too.
Everett’s SCID diagnosis
At birth, Everett was big, beautiful, and looked perfectly healthy. My husband Brian and I already had a 2-and-a-half-year-old son, Alden, so we were less anxious as parents when we brought Everett home. I didn’t run errands with Alden until he was at least a month old, but Everett was out and about with us within a few days of being born. After all, we thought we knew what to expect.
But two weeks after Everett’s birth, a doctor called to discuss Everett’s newborn screening test results. I listened in disbelief as he explained that Everett’s blood sample indicated he may have an immune deficiency.
“He may need a bone marrow transplant,” the doctor told me.
I was shocked. Everett’s checkup with his pediatrician just two days earlier went swimmingly. I hung up and held on to the doctor’s assurance that there was a 40 percent chance Everett’s test result was a false positive.
After five grueling days of waiting for additional test results and answers, I received the call: Everett had virtually no immune system. He needed to be quickly admitted to UCSF Benioff Children’s Hospital in California so they could keep him isolated and prepare to give him a stem cell transplant. UCSF diagnosed him specifically with SCID-X1, the same form David battled.
Beginning SCID treatment
The hospital was 90 miles and more than two hours away from home. Our family of four had to be split into two, with me staying in the hospital primarily with Everett and Brian and Alden remaining at home, except for short visits. The sudden upheaval left Alden confused, shaken, and sad. Brian and I quickly transformed into helicopter parents, neurotically focused on every imaginable contact with germs, even the mildest of which could be life-threatening to Everett.
When he was 7 weeks old, Everett received a stem cell transplant with me as his donor, but the transplant failed because my immune cells began attacking his body. Over his short life, Everett has also spent more than six months collectively in the hospital and more than three years in semi-isolation at home. He’s endured countless biopsies, ultrasounds, CT scans, infusions, blood draws, trips to the emergency department, and medical transports via ambulance or helicopter.
Gene therapy to treat SCID
At age 2, his liver almost failed and a case of pneumonia required breathing support with sedation. That’s when a doctor came into the pediatric intensive care unit and said, “When Everett gets through this, we need to do something else for him.” He recommended a gene therapy clinical trial at the National Institutes of Health (NIH) that was finally showing success in patients over age 2 whose transplants had failed. This was the first group of SCID-X1 patients to receive gene therapy using a lentiviral vector combined with a light dose of chemotherapy.
After the complications from our son’s initial stem cell transplant, Brian and I didn’t want to do another stem cell transplant using donor cells. My donor cells were at war with his body and cells from another donor could do the same. Also, the odds of Everett having a suitable donor on the bone marrow registry were extremely small since he didn’t have one as a newborn. At the NIH, he would receive a transplant with his own, perfectly matched, gene-corrected cells. They would be right at home.
Other treatment options would likely only partially restore his immunity and require him to receive infusions of donor antibodies for life, as was the case with his first transplant. Prior gene therapy trials produced similarly incomplete results and several participants developed leukemia. The NIH trial was the first one showing promise in fully restoring immunity, without a risk of cancer. Brian and I felt it was Everett’s best option. Without hesitation, we flew across the country for his treatment. Everett received the gene therapy in September 2016 when he was 3, becoming the youngest patient NIH’s clinical trial has treated.
Everett’s recovery
It’s been more than two years since Everett received gene therapy and now more than ever, he has the best hope of developing a fully functioning immune system. He just received his first vaccine to test his ability to mount a response. Now 6 years old, he’s completed kindergarten and has been to Disney World. He plays in the dirt and loves shows and movies from the ’80s (maybe some of the same ones David enjoyed).
Everett knows he has been through a lot and that his doctors “fixed his DNA,” but he’s focused largely on other things. He’s vocal when confronted with medical pain or trauma, but seems to block out the experiences shortly afterwards. It’s sad for Brian and me that Everett developed these coping skills at such a young age, but we’re so grateful he is otherwise expressive and enjoys engaging with others. Once in the middle of the night, he woke us up as he stood in the hallway, exclaiming, “I’m going back to bed, but I just want you to know that I love you with all my heart!”
I wish more than anything that Everett had not been born with such a terrible disease and I could erase all the trauma, isolation, and pain. But I know that he is actually one of the lucky unlucky ones. Everett is fortunate his disease was caught early by SCID newborn screening, which became available in California not long before his birth. Without this test, we would not have known he had SCID until he became dangerously ill. His prognosis would have been much worse, even under the care of his truly brilliant and remarkable doctors, some of whom cared for David decades earlier.
Everett Schmitt meeting David Vetter’s mom Carol Ann Demaret. Photo – Brian Schmitt
When Everett was 4, soon after the gene therapy gave him the immunity he desperately needed, our family was fortunate enough to cross paths with David’s mom, Carol Ann, at an Immune Deficiency Foundation event. Throughout my life, I had seen her in pictures and on television with David. In person, she was warm, gracious, and humble. When I introduced her to Everett and explained that he had SCID just like David, she looked at Everett with loving eyes and asked if she could touch him. As she touched Everett’s shoulder and they locked eyes, Brian and I looked on with profound gratitude.
Anne Klein is a parent, scientist, and a patient advocate for two gene therapy trials funded by the California Institute for Regenerative Medicine. She is passionate about helping parents of children with SCID navigate treatment options for their child.
You can read about the clinical trials we are funding for SCID here, here,here and here.
At CIRM we are privileged to work with many remarkable people who combine brilliance, compassion and commitment to their search for new therapies to help people in need. One of those who certainly fits that description is UC Davis’ Jan Nolta.
This week the UC Davis Newsroom posted a great interview with Jan. Rather than try and summarize what she says I thought it would be better to let her talk for herself.
Jan Nolta
Talking research, unscrupulous clinics, and sustaining the momentum
(SACRAMENTO) —
In 2007, Jan Nolta
returned to Northern California from St. Louis to lead what was at the
time UC Davis’ brand-new stem cell program. As director of the UC Davis Stem Cell Program
and the Institute for Regenerative Cures, she has overseen the opening
of the institute, more than $140 million in research grants, and dozens
upon dozens of research studies. She recently sat down to answer some
questions about regenerative medicine and all the work taking place at UC Davis Health.
Q: Turning stem cells into cures has been your mission and mantra since you founded the program. Can you give us some examples of the most promising research?
I am so excited about our research. We have about 20 different disease-focused teams.
That includes physicians, nurses, health care staff, researchers and
faculty members, all working to go from the laboratory bench to
patient’s bedside with therapies.
Perhaps the most promising and
exciting research right now comes from combining blood-forming
stem cells with gene therapy. We’re working in about
eight areas right now, and the first cure, something that we definitely
can call a stem cell “cure,” is coming from this combined approach.
Soon,
doctors will be able to prescribe this type of stem cell therapy.
Patients will use their own bone marrow or umbilical cord stem cells.
Teams such as ours, working in good manufacturing practice
facilities, will make vectors, essentially “biological delivery
vehicles,” carrying a good copy of the broken gene. They will be
reinserted into a patient’s cells and then infused back into the
patient, much like a bone marrow transplant.
“Perhaps the most promising and exciting research right now comes from combining blood-forming stem cells with gene therapy.”
Along with treating the famous bubble baby disease,
where I had started my career, this approach looks very promising for
sickle cell anemia. We’re hoping to use it to treat several different
inherited metabolic diseases. These are conditions characterized by an
abnormal build-up of toxic materials in the body’s cells. They interfere
with organ and brain function. It’s caused by just a single enzyme.
Using the combined stem cell gene therapy, we can effectively put a good
copy of the gene for that enzyme back into a patient’s bone marrow stem
cells. Then we do a bone marrow transplantation and bring back a
person’s normal functioning cells.
The beauty of this therapy is
that it can work for the lifetime of a patient. All of the blood cells
circulating in a person’s system would be repaired. It’s the number one
stem cell cure happening right now. Plus, it’s a therapy that won’t be
rejected. These are a patient’s own stem cells. It is just one type of
stem cell, and the first that’s being commercialized to change cells
throughout the body.
Q: Let’s step back for a moment. In 2004, voters approved Proposition 71.
It has funded a majority of the stem cell research here at UC Davis and
throughout California. What’s been the impact of that ballot measure
and how is it benefiting patients?
We have learned so
much about different types of stem cells, and which stem cell will be
most appropriate to treat each type of disease. That’s huge. We had to
first do that before being able to start actual stem cell therapies. CIRM [California Institute for Regenerative Medicine] has funded Alpha Stem Cell Clinics.
We have one of them here at UC Davis and there are only five in the
entire state. These are clinics where the patients can go for
high-quality clinical stem cell trials approved by the FDA
[U.S. Food and Drug Administration]. They don’t need to go to
“unapproved clinics” and spend a lot of money. And they actually
shouldn’t.
“By the end of this year, we’ll have 50 clinical trials.”
By the end of this year, we’ll have 50 clinical trials [here at UC Davis Health]. There are that many in the works.
Our Alpha Clinic
is right next to the hospital. It’s where we’ll be delivering a lot of
the immunotherapies, gene therapies and other treatments. In fact, I
might even get to personally deliver stem cells to the operating room
for a patient. It will be for a clinical trial involving people who have
broken their hip. It’s exciting because it feels full circle, from
working in the laboratory to bringing stem cells right to the patient’s
bedside.
We have ongoing clinical trials
for critical limb ischemia, leukemia and, as I mentioned, sickle cell
disease. Our disease teams are conducting stem cell clinical trials
targeting sarcoma, cellular carcinoma, and treatments for dysphasia [a
swallowing disorder], retinopathy [eye condition], Duchenne muscular
dystrophy and HIV. It’s all in the works here at UC Davis Health.
There’s
also great potential for therapies to help with renal disease and
kidney transplants. The latter is really exciting because it’s like a
mini bone marrow transplant. A kidney recipient would also get some
blood-forming stem cells from the kidney donor so that they can better
accept the organ and not reject it. It’s a type of stem cell therapy
that could help address the burden of being on a lifelong regime of
immunosuppressant drugs after transplantation.
Q: You and
your colleagues get calls from family members and patients all the
time. They frequently ask about stem cell “miracle” cures. What should
people know about unproven treatments and unregulated stem cell clinics?
That’s a great question.The number one rule is that if
you’re asked to pay money for a stem cell treatment, don’t do it. It’s a
big red flag.
When it comes to advertised therapies: “The number one rule is that if you’re asked to pay money for a stem cell treatment, don’t do it. It’s a big red flag.”
Unfortunately,
there are unscrupulous people out there in “unapproved clinics” who
prey on desperate people. What they are delivering are probably not even
stem cells. They might inject you with your own fat cells, which
contain very few stem cells. Or they might use treatments that are not
matched to the patient and will be immediately rejected. That’s
dangerous. The FDA is shutting these unregulated clinics down one at a
time. But it’s like “whack-a-mole”: shut one down and another one pops
right up.
On the other hand, the Alpha Clinic is part of our
mission is to help the public get to the right therapy, treatment or
clinical trial. The big difference between those who make patients pay
huge sums of money for unregulated and unproven treatments and UC Davis
is that we’re actually using stem cells. We produce them in rigorously
regulated cleanroom facilities. They are certified to contain at least 99% stem cells.
Patients
and family members can always call us here. We can refer them to a
genuine and approved clinical trial. If you don’t get stem cells at the
beginning [of the clinical trial] because you’re part of the placebo
group, you can get them later. So it’s not risky. The placebo is just
saline. I know people are very, very desperate. But there are no miracle
cures…yet. Clinical trials, approved by the FDA, are the only way we’re
going to develop effective treatments and cures.
Q:
Scientific breakthroughs take a lot of patience and time. How do you and
your colleagues measure progress and stay motivated?
Motivation? “It’s all for the patients.”
It’s
all for the patients. There are not good therapies yet for many
disorders. But we’re developing them. Every day brings a triumph.
Measuring progress means treating a patient in a clinical trial, or
developing something in the laboratory, or getting FDA approval. The big
one will be getting biological license approval from the FDA, which
means a doctor can prescribe a stem cell or gene therapy treatment. Then
it can be covered by a patient’s health insurance.
I’m a cancer
survivor myself, and I’m also a heart patient. Our amazing team here at
UC Davis has kept me alive and in great health. So I understand it from
both sides. I understand the desperation of “Where do I go?” and “What
do I do right now?” questions. I also understand the science side of
things. Progress can feel very, very slow. But everything we do here at
the Institute for Regenerative Cures is done with patients in mind, and
safety.
We know that each day is so important when you’re watching
a loved one suffer. We attend patient events and are part of things
like Facebook groups, where people really pour their hearts out. We say
to ourselves, “Okay, we must work harder and faster.” That’s our
motivation: It’s all the patients and families that we’re going to help
who keep us working hard.
Medical treatments for a variety of diseases have advanced dramatically in recent decades, but sometimes they come with a cost; namely damage to surrounding tissues and organs. That’s where stem cell research and regenerative medicine come in. Those fields seek to develop new ways of repairing the damage. But how do you see if those repairs are working? Researchers at Purdue say they have found a way to do just that.
The researchers have developed a 3D technology that allows
them to track, map and monitor what happens with cells and tissues that are
being used to repair damage caused by disease or the treatment for the disease.
By observing the cells and tissues they can see if they are staying where they
are needed and if they are working.
The technology, published in the journalACS Nano, uses tiny sensors placed on a flexible scaffold to monitor the new materials in the body. Ingeniously the scaffold is buoyant, so it can float and survive in the wet conditions found in many parts of the body.
In a news
release, Chi Hwan Lee, the leader of the research team, says the device could
help millions of people:
“Tissue
engineering already provides new hope for hard-to-treat disorders, and our
technology brings even more possibilities. This device offers an expanded set
of potential options to monitor cell and tissue function after surgical transplants
in diseased or damaged bodies. Our technology offers diverse options for
sensing and works in moist internal body environments that are typically
unfavorable for electronic instruments.”
Purdue created this video showing the device and explaining how it works.
When cancer spreads to the bone the results can be devastating
Battling cancer is always a balancing act. The methods we use – surgery, chemotherapy and radiation – can help remove the tumors but they often come at a price to the patient. In cases where the cancer has spread to the bone the treatments have a limited impact on the disease, but their toxicity can cause devastating problems for the patient. Now, in a CIRM-supported study, researchers at UC Irvine (UCI) have developed a method they say may be able to change that.
Bone metastasis –
where cancer starts in one part of the body, say the breast, but spreads to the
bones – is one of the most common complications of cancer. It can often result
in severe pain, increased risk of fractures and compression
of the spine. Tackling them is difficult because some cancer cells can
alter the environment around bone, accelerating the destruction of healthy bone
cells, and that in turn creates growth factors that stimulate the growth of the
cancer. It is a vicious cycle where one problem fuels the other.
Now researchers at
UCI have developed a method where they combine engineered mesenchymal stem cells (taken from the bone marrow) with
targeting agents. These act like a drug delivery device, offloading
different agents that simultaneously attack the cancer but protect the bone.
Weian Zhao; photo courtesy UC Irvine
In a news release Weian Zhao, lead author of the study, said:
“What’s powerful about this
strategy is that we deliver a combination of both anti-tumor and anti-bone
resorption agents so we can effectively block the vicious circle between
cancers and their bone niche. This is a safe and almost nontoxic treatment
compared to chemotherapy, which often leaves patients with lifelong issues.”
The research,
published in the journal EBioMedicine,
has already been shown to be effective in mice. Next, they hope to be able to
do the safety tests to enable them to apply to the Food and Drug Administration
for permission to test it in people.
The team say if this
approach proves effective it might also be used to help treat other bone-related
diseases such as osteoporosis and multiple myeloma.
Stem cells have been in the news a lot this week, and not necessarily for the right reason.
First, the US Food and Drug Administration (FDA) won a big legal decision in its fight to
crack down on clinics offering bogus, unproven and unapproved stem cell
therapies.
But then came news that another big name celebrity, in this case Star Trek star William Shatner, was going to one of these clinics for an infusion of what he called “restorative cells”.
It’s a reminder that
for every step forward we take in trying to educate the public about the
dangers of clinics offering unproven therapies, we often take another step back
when a celebrity essentially endorses the idea.
So that’s why we are
taking our message directly to the people, as often as we can and wherever we
can.
In June we are going
to be holding a free, public event in Los Angeles to coincide with the opening
of the International Society for Stem Cell Research’s Annual Conference, the
biggest event on the global stem cell calendar. There’s still time to register for that by the way. The event is from 6-7pm on
Tuesday, June 25th in Petree Hall C., at the Los Angeles Convention
Center at 1201 South Figueroa Street, LA 90015.
It’s going to be an
opportunity to learn about the real progress being made in stem cell research,
thanks in no small part to CIRM’s funding. We’re honored to be joined by UCLA’s
Dr. Don Kohn, who has helped cure dozens of children born with a fatal immune
system disorder called severe combined immunodeficiency, also known as “bubble
baby disease”. And we’ll hear from the family of one of those children whose
life he helped save.
And because CIRM is
due to run out of money to fund new projects by the end of this year you’ll
also learn about the very real concerns we have about the future of stem cell
research in California and what can be done to address those concerns. It promises
to be a fascinating evening.
But that’s not all. Our
partners at USC will be holding another public event on stem cell research, on
Wednesday June 26th from 6.30p to 8pm. This one is focused on
treatments for age-related blindness. This features some of the top stem cell
scientists in the field who are making encouraging progress in not just slowing
down vision loss, but in some cases even reversing it.
We know that we face
some serious challenges in trying to educate people about the risks of going to
a clinic offering unproven therapies. But we also know we have a great story to
tell, one that shows how we are already changing lives and saving lives, and
that with the support of the people of California we’ll do even more in the
years to come.
Retina affected by age-related macular degeneration
Age-related macular degeneration (AMD) is the leading cause of vision loss in people over 60. It affects 10 million Americans. That’s more than cataracts and glaucoma combined. The causes of AMD are not known but are believed to involve a mixture of hereditary and environmental factors. There is no treatment for it.
Now, in a
CIRM-funded study, researchers at UC San Diego (UCSD) have used stem cells to
help identify genetic elements that could provide some clues as to the cause,
and maybe give some ideas on how to treat it.
Before we get into what the researchers did let’s take a look at what AMD does. At a basic level it attacks the retina, the thin layer of tissue that lines the back of the eye. The retina receives light, turns it into electrical signals and sends it to the brain which turns it into a visual image.
The disease destroys the macula, the part of the retina that controls our central vision. At first, sight becomes blurred or fuzzy but over time it progresses to the point where central vision is almost completely destroyed.
To try and
understand why this happens the team at UCSD took skin samples from six people
with AMD and, using the iPSC method, turned those cells into the kinds of cell found in the retina. Because
these cells came from people who had AMD they now displayed the same
characteristics as AMD-affected retinal cells. This allowed the researchers to
create what is called a “disease-in-a-dish” model that allowed them to see, in
real time, what is happening in AMD.
They were able to
identify a genetic variant that reduces production of a protein called VEGFA,
which is known to promote the growth of new blood vessels.
In a news release Kelly Frazer, director of the Institute for Genomic Medicine at UCSD and the lead author of the study, said the results were unexpected.
Kelly Frazer, PhD, UC San Diego
“We didn’t start with the VEGFA gene when we went looking for genetic causes of AMD. But we
were surprised to find that with samples from just six people, this genetic
variation clearly emerged as a causal factor.”
Frazer says this
discovery, published in the journal Stem
Cell Reports, could
ultimately lead to new approaches to developing new treatments for AMD.
A Sunday Afternoon on the Island of La Grande Jatte by Georges-Pierre Seurat
When most people think of stem cells, they might conjure up an image of small dots under a microscope. It is hard to imagine these small specs being applied to three-dimensional structures. But like a pointillism painting, such as A Sunday Afternoon on the Island of La Grande Jatte by Georges-Pierre Seurat, stem cells can be used to help build things never thought possible. Two studies demonstrate this concept in very different ways.
MIT engineers have designed coiled “nanoyarn,” shown as an artist’s interpretation here. The twisted fibers are lined with living cells and may be used to repair injured muscles and tendons while maintaining their flexibility. Image by Felice Frankel
A study at MIT used nanofiber coated with muscle stem cells and mesenchymal stem cells in an effort to provide a flexible range of motion for these stem cells. Hundreds of thousands of nanofibers were twisted, resembling yarn and rope, in order to mimic the pattern found in tendons and muscle tissue throughout the body. The researchers at MIT found that the yarn like structure of the nanofibers keep the stem cells alive and growing, even as the team stretched and bent the fibers multiple times.
Normally, when a person injures these types of tissues, particularly around a major joint such as the shoulder or knee, it require surgery and weeks of limited mobility to heal properly. The MIT team hopes that their technology could be applied toward treating the site of injury while maintaining range of motion as the newly applied stem cells continue to grow to replace the injured tissue.
In an article, Dr. Ming Guo, assistant professor of mechanical engineering at MIT and one of the authors of the study, was quoted as saying,
“When you repair muscle or tendon, you really have to fix their movement for a period of time, by wearing a boot, for example. With this nanofiber yarn, the hope is, you won’t have to wearing anything like that.”
Their complete findings were published in the Proceedings of the National Academy of Sciences (PNAS).
Researchers in Germany have created transparent human organs using a new technology that could pave the way to print three-dimensional body parts such as kidneys for transplants. Above, Dr. Ali Ertuerk inspects a transparent human brain. Photo courtesy of Reuters.
In a separate study, researchers in Germany have successfully created transparent human organs, paving the way to print three-dimensional body parts. Dr. Ali Erturk at Ludwig Maximilians University in Munich, with a team of scientists, developed a technique to create a detailed blueprint of organs, including blood vessels and every single cell in its specific location. These directions were then used to print a scaffold of the organ. With the help of a 3D printer, stem cells, acting like ink in a printer, were injected into the correct positions to make the organ functional.
Previously, 3D-printed organs lacked detailed cellular structures because they were based on crude images from computer tomography or MRI machines. This technology has now changed that.
“We can see where every single cell is located in transparent human organs. And then we can actually replicate exactly the same, using 3D bioprinting technology to make a real functional organ. Therefore, I believe we are much closer to a real human organ for the first time now.”
Speakers at the Alpha Stem Cell Clinics Network Symposium: Photo by Marco Sanchez
From Day One CIRM’s goal has been to advance stem cell research in California. We don’t do that just by funding the most promising research -though the 51 clinical trials we have funded to date clearly shows we do that rather well – but also by trying to bring the best minds in the field together to overcome problems.
Over the years we
have held conferences, workshops and symposiums on everything from Parkinson’s
disease, cerebral
palsy and tissue
engineering. Each one attracted the key players and stakeholders in the
field, brainstorming ideas to get past obstacles and to explore new ways of
developing therapies. It’s an attempt to get scientists, who would normally be
rivals or competitors, to collaborate and partner together in finding the best
way forward.
It’s not easy to do,
and the results are not always obvious right away, but it is essential if we
hope to live up to our mission of accelerating stem cell therapies to patients
with unmet medical needs.
For example. This
past week we helped organize two big events and were participants in another.
The first event we
pulled together, in partnership with Cedars-Sinai Medical Center, was a
workshop called “Brainstorm Neurodegeneration”. It brought together leaders in stem
cell research, genomics, big data, patient advocacy and the Food and Drug
Administration (FDA) to tackle some of the issues that have hampered progress
in finding treatments for things like Parkinson’s, Alzheimer’s, ALS and
Huntington’s disease.
We rather
ambitiously subtitled the workshop “a cutting-edge meeting to disrupt the field”
and while the two days of discussions didn’t resolve all the problems facing us
it did produce some fascinating ideas and some tantalizing glimpses at ways to
advance the field.
Alpha Stem Cell Clinics Network Symposium: Photo by Marco Sanchez
Two days later we partnered with UC San Francisco to host the Fourth Annual CIRM Alpha Stem Cell Clinics Network Symposium. This brought together the scientists who develop therapies, the doctors and nurses who deliver them, and the patients who are in need of them. The theme was “The Past, Present & Future of Regenerative Medicine” and included both a look at the initial discoveries in gene therapy that led us to where we are now as well as a look to the future when cellular therapies, we believe, will become a routine option for patients.
Bringing these
different groups together is important for us. We feel each has a key role to
play in moving these projects and out of the lab and into clinical trials and
that it is only by working together that they can succeed in producing the
treatments and cures patients so desperately need.
Cierra Jackson: Photo by Marco Sanchez
As always it was the patients who surprised us. One, Cierra Danielle Jackson, talked about what it was like to be cured of her sickle cell disease. I think it’s fair to say that most in the audience expected Cierra to talk about her delight at no longer having the crippling and life-threatening condition. And she did. But she also talked about how hard it was adjusting to this new reality.
Cierra said sickle
cell disease had been a part of her life for all her life, it shaped her daily
life and her relationships with her family and many others. So, to suddenly
have that no longer be a part of her caused a kind of identity crisis. Who was
she now that she was no longer someone with sickle cell disease?
She talked about how
people with most diseases were normal before they got sick, and will be normal
after they are cured. But for people with sickle cell, being sick is all they
have known. That was their normal. And now they have to adjust to a new normal.
It was a powerful
reminder to everyone that in developing new treatments we have to consider the
whole person, their psychological and emotional sides as well as the physical.
CIRM’s Dr. Maria Millan (right) at a panel presentation at the Stanford Drug Discovery Symposium. Panel from left to right are: James Doroshow, NCI; Sandy Weill, former CEO Citigroup; Allan Jones, CEO Allen Institute
And so on to the third event we were part of, the Stanford Drug Discovery Symposium. This was a high level, invitation-only scientific meeting that included some heavy hitters – such as Nobel Prize winners Paul Berg and Randy Schekman, former FDA Commissioner Robert Califf. Over the course of two days they examined the role that philanthropy plays in advancing research, the increasingly important role of immunotherapy in battling diseases like cancer and how tools such as artificial intelligence and big data are shaping the future.
CIRM’s President and CEO, Dr. Maria Millan, was one of those invited to speak and she talked about how California’s investment in stem cell research is delivering Something Better than Hope – which by a happy coincidence is the title of our 2018 Annual Report. She highlighted some of the 51 clinical trials we have funded, and the lives that have been changed and saved by this research.
The presentations at
these conferences and workshops are important, but so too are the conversations
that happen outside the auditorium, over lunch or at coffee. Many great
collaborations have happened when scientists get a chance to share ideas, or
when researchers talk to patients about their ideas for a successful clinical
trial.
It’s amazing what happens when you bring people together who might otherwise never have met. The ideas they come up with can change the world.
At CIRM we are very cautious about using the “c” word. Saying someone has been “cured” is a powerful statement but one that loses its meaning when over used or used inappropriately. However, in the case of a new study from U.C. San Francisco and St. Jude Children’s Research Hospital in Memphis, saying “cure” is not just accurate, it’s a celebration of something that would have seemed impossible just a few years ago.
The research focuses on children with a specific form of Severe Combined Immunodeficiency (SCID) called X-Linked SCID. It’s also known as “bubble baby” disease because children born with this condition lack a functioning immune system, so even a simple infection could be fatal and in the past they were kept inside sterile plastic bubbles to protect them.
In this study, published in the New England Journal of Medicine, researchers took blood stem
cells from the child and, in the lab, genetically re-engineered them to correct
the defective gene, and then infused them back into the child. Over time they
multiplied and created a new blood supply, one free of the defect, which helped
repair the immune system.
In a news
release Dr. Ewelina Mamcarz, the lead author of the study, announced that
ten children have been treated with this method.
“These patients are toddlers now, who are responding to
vaccinations and have immune systems to make all immune cells they need for
protection from infections as they explore the world and live normal lives.
This is a first for patients with SCID-X1.”
The ten children were treated at both St. Jude and at UCSF
and CIRM
funded the UCSF arm of the clinical trial.
The story, not surprisingly, got a lot of attention in the
media including this fine
piece by CNN.