Why TED Talks are ChildX’s Play

When the TED (Technology, Entertainment, Design) talks began in 1984 they were intended to be a one-off event. So much for that idea! Today they are a global event, with TED-sponsored conferences held everywhere from Scotland to Tanzania and India. They have also spawned a mini-industry of copycat events. Well, their slogan is “Ideas Worth Spreading” so in a way they only have themselves to blame for having such a great idea.

Dr. Maria Grazia Roncarolo

Dr. Maria Grazia Roncarolo

The latest place for that idea to take root is Stanford, which is holding a TED-style event focused on critical issues facing child and maternal health. The event – April 2nd and 3rd at Stanford – is called ChildX where x = medicine + technology + innovative treatment + wellbeing. ChildX will bring together some of the leading experts in the field for a series of thoughtful, powerful presentations on the biggest problems facing child and maternal health, and the most exciting research aimed at resolving those problems. One of the main tracks during the two-day event is a section on stem cell and gene therapy. It will raise a number of key questions including:

  • What advances have occurred to enable these therapies to move from science fiction less than a decade ago to the promise of next generation transformative therapeutics?
  • In coming years, how will these therapies allow children with presently incurable diseases to become children living free of disease and reaching their maximum potential?

The moderator for that discussion is Dr. Maria Grazia Roncarolo, and you can hear her talking about the most recent advances in the clinical use of stem cell and gene therapies on this podcast. Anytime you get a chance to hear some of the most compelling speakers in their field talk about exciting innovations that could shape the future, it’s worth taking the time to listen.

Extending the Lease: Stanford Scientists Turn Back Clock on Aging Cells

In the end, all living things—even the cells in our bodies—must die. But what if we could delay the inevitable, even just for a bit? What new scientific advances could come as a result?

Stanford scientists have found a way to temporarily extend the life of an aging cell.

Stanford scientists have found a way to temporarily extend the life of an aging cell.

In research published this week in the FASEB Journal, scientists at the Stanford University School of Medicine have devised a new method that gives aging DNA a molecular facelift.

The procedure, developed by Stanford Stem Cell Scientist Helen Blau and her team at the Baxter Laboratory for Stem Cell Biology, physically lengthens the telomeres—the caps on the ends of chromosomes that protect the cell from the effects of aging.

When born, all cells contain chromosomes capped with telomeres. But during each round of cell division, those telomeres shrink. Eventually, the telomeres shorten to such an extent that the chromosomes can no longer replicate at the rate they once could. For the cell, this is the beginning of the end.

The link between telomeres and cellular aging has been an intense focus in recent years, including the subject of the 2009 Nobel Prize in Physiology or Medicine. Extending the lifespan of cells by preventing—or reversing— the shortening of telomeres can not only boost cell division during laboratory studies, but can also lead to new therapeutic strategies to treat age-related diseases.

“Now we have found a way to lengthen human telomeres… turning back the internal clock in these cells by the equivalent of many years of human life,” explained Blau in a press release. “This greatly increases the number of cells available for studies such as drug testing or disease modeling.”

The method Blau and her team describe involves the use of a modified bit of RNA that boosts the production of the protein telomerase. Telomerase is normally present in high levels in stem cells, but drops off once the cells mature. Blau’s modified RNA gives the aging cells a shot of telomerase, after which they begin behaving like cells half their age. But only for about 48 hours, after which they begin to degrade again.

The temporary nature of this change, say the researchers, offers significant advantages. On the biological level, it means that the treated cells won’t begin dividing out of control indefinitely, minimizing the risk of tumor formation. The study’s first author John Ramunas offers up some additional pluses to their method:

“Existing methods of extending telomeres act slowly, whereas our method acts over just a few days to reverse telomere shortening that occurs over more than a decade of normal aging. This suggests that a treatment using our method could be brief and infrequent.”

Indeed, the genetic disease Duchenne muscular dystrophy is in part characterized by abnormally short telomeres. Blau reasons that their discovery could lead to better treatments for this disease. Their immediate future steps involve testing their method in a variety of cell types. Said Blau:

“We’re working to understand more about the differences among cell types, and how we can overcome those differences to allow this approach to be more universally successful.”

Hear more about stem cells and muscular dystrophy in our recent Spotlight on Disease featuring Helen Blau:

Stem Cells become Tool to Screen for Drugs; Fight Dangerous Heart Infections.

A Stanford study adds a powerful example to our growing list of diseases that have yielded their secrets to iPS-type stem cells grown in a dish. These “disease-in-a-dish” models have become one of the most rapidly growing areas of stem cell science. But this time they did not start with skin from a patient with a genetic disease and see how that genetic defect manifests in cells in a dish. Instead they started with normal tissue and looked at how the resulting cells reacted to viral infection.

They were looking at a nasty heart infection called viral myocarditis, which can begin to cause damage to heart muscle within hours and often leads to death. Existing antiviral drugs have only a modest impact on reducing these infections. So even though there is an urgent need to find better drugs, animal models have not proven very useful and there is no ready supply of human heart tissue for lab study.

To create a ready supply of human heart tissue Joseph Wu’s CIRM-funded team at Stanford started with skin samples from three healthy donors, reprogrammed them into iPS cells and then matured those into heart muscle tissue. Then they took one of the main culprits of this infection, coxsackievirus, and labeled it with a fluorescent marker so they could track its activity in the heart cells.

They were able to verify that the virus infected the cells in a dish just as they do in normal heart tissue. And when they tried treating the cells with four existing antiviral drugs they saw the same modest decrease in the rate of infected cells seen in patients. For one of the drugs that had been shown to cause some heart toxicity, they also saw some damage to the cells in the dish.

They propose that their model can now be used to screen thousands of compounds for potentially more effective and safer drugs. They published their results in Circulation Research July 15.