Glimpse the future at a fun-filled Festival of Science

Hands-on science and fun

Hands-on science and fun

Imagine a giant circus but instead of performing animals you have a Robot Zoo; instead of scary clowns you have colorful chemicals in glass beakers. That’s what AT&T Park will look like this Saturday when the 5th Annual Discovery Day opens its doors.  It’s a hands-on, eye-opening, brain-engaging celebration of science for everyone.

It’s a lot of fun

You’ll get a chance to learn about the science of sports – an appropriate subject as you’ll be doing it at the home of the 3-time World Champions of baseball, the San Francisco Giants. You’ll also be able to experience some of the training it takes to become an astronaut, without any of that pesky going-into-space business.

All in all you’ll be able to visit more than 150 hands-on exhibits and activities spread throughout the park, put together by the top science organizations, institutions and companies from all over the Bay Area. We’re talking Stanford University, UCSF, The Tech Museum, the Exploratorium, KQED, US Geological Society and the list goes on and on.

Meet the future right now

Today's scientists inspiring tomorrow's

Today’s scientists inspiring tomorrow’s

You’ll get to meet the scientists who are exploring outer space and the depths of the ocean, who are doing cutting edge research into health and who are pushing the boundaries of scientific knowledge.

And you will get a chance to meet us, the CIRM Team. We’re going to be there all day talking about the exciting progress being made in the field of stem cell research, and about the 15 clinical trials we are currently funding in heart disease, diabetes, cancer, HIV/AIDS and blindness (to name just a few).

You can find us on the Promenade level at booth P50. We’re easy to spot. We’re the coolest ones around. And if you have kids who enjoy PlayDoh, we will give them a chance to use the fun stuff to make stem cells.

But best of all Discovery Day is a chance for kids to learn how amazing science can be, to meet the scientists who are helping shape their future, and to consider a future as scientists themselves. And for the rest of us, it’s a chance to remind ourselves why we fell in love with science to start with.

And as if that wasn’t enough, the whole shebang is FREE.

The event is this Saturday, November 7 from 10am – 4pm. For details on where it is and how to get there – go to Discovery Day

Fun on the field at AT&T Park

Fun on the field at AT&T Park

Don Reed Reflects on the California Stem Cell Initiative

StemCellBattlesCoverYesterday was stem cell awareness day. In honor of this important event, Don Reed held a book reading at CIRM for his newly released book, STEM CELL BATTLES: Proposition 71 and Beyond: How Ordinary People Can Fight Back Against the Crushing Burden of Chronic Disease.

Don has worn many hats during his life. He’s been a power lifter, a diver at Sea World, and is one of California’s most tenacious stem cell research advocates. His stem cell journey began when his son, Roman Reed, was seriously injured in a football accident, leaving him mostly paralyzed from the neck down.

Both Don and Roman didn’t let this tragic event ruin their lives or steal their hope. In fact, both Don and his son were instrumental for getting proposition 71 to pass, leading to the birth of CIRM and new hope for patients with uncured diseases.

At yesterday’s book reading, Don chronicled the early battles to get human stem cell research off the ground in California, the progress that’s been made so far and the promise for future therapies. It was truly an inspiring event, bringing together patients, friends of Don and his wife Gloria, and CIRM scientists to celebrate the stem cell research accomplishments of the past ten years.


Enjoy more pictures of the event below and a short video of Jonathan Thomas, Chair of the Governing Board of CIRM, who said a few words in praise of Don Reed’s efforts to fight for stem cell research in California.


Don Reed and his wife Gloria share a smile with CIRM’s Pat Olson.


Jonathan Thomas and Don Reed.

Related links:

Happy Stem Cell Awareness Day!

SCAD_Logo_2015I woke up today extra early this morning feeling like a kid at Christmas time because it’s Stem Cell Awareness day!

This exciting day brings together organizations and people around the world working to ensure that we realize the benefits of one of the most promising fields of science in our time. The day is a unique global opportunity to foster greater understanding about stem cell research and the range of potential applications for disease and injury.

For the millions of people around the world who suffer from incurable diseases and injury, Stem Cell Awareness Day is a day to celebrate the scientific advances made to-date and be hopeful of what is yet to come.

Institutions and scientists around the world will be participating in talks and activities that celebrate and also educate the community about stem cell research. For a list of events, check out our Stem Cell Awareness Day webpage. You can also follow other events on twitter by following the hashtags #stemcellday and #astemcellscientistbecause.

In celebration of this exciting day, the Stem Cellar team would like to highlight a few videos and webpages dedicated to stem cell awareness. Enjoy!


“A Stem Cell Story” from our friends at EuroStemCell

#AStemCellScientistBecause videos via Cell Stem Cell on twitter


Stem Cell Awareness Webpages:

Helping patient’s fight back against deadliest form of skin cancer

Caladrius Biosciences has been funded by CIRM to conduct a Phase 3 clinical trial to treat the most severe form of skin cancer: metastatic melanoma. Metastatic melanoma is a disease with no effective treatment, only around 15 percent of people with it survive five years, and every year it claims an estimated 10,000 lives in the U.S.

The CIRM/Caladrius Clinical Advisory Panel meets to chart future of clinical trial

The CIRM/Caladrius Clinical Advisory Panel meets to chart future of clinical trial

The Caladrius team has developed an innovative cancer treatment that is designed to target the cells responsible for tumor growth and spread. These are called cancer stem cells or tumor-initiating cells. Cancer stem cells can spread in the body because they have the ability to evade the body’s immune defense and survive standard anti-cancer treatments such as chemotherapy. The aim of the Caladrius treatment is to train the body’s immune system to recognize the cancer stem cells and attack them.

Attacking the cancer

The treatment process involves taking a sample of a patient’s own tumor and, in a laboratory, isolating specific cells responsible for tumor growth . Cells from the patient’s blood, called “peripheral blood monocytes,” are also collected. The mononucleocytes are responsible for helping the body’s immune system fight disease. The tumor and blood cells (after maturation into dendritic cells) are then combined and incubated so that the patient’s immune cells become trained to recognize the cancer cells.

After the incubation period, the patient’s immune cells are injected back into their body where they generate an immune response to the cancer cells. The treatment is like a vaccine because it trains the body’s immune system to recognize and rapidly attack the source of disease.

Recruiting the patients

Caladrius has already dosed the first patient in the trial (which is double blinded so no one knows if the patient got the therapy or a placebo) and hopes to recruit 250 patients altogether.

This is the first Phase 3 trial that CIRM has funded so we’re obviously excited about its potential to help people battling this deadly disease.  In a recent news release David J. Mazzo, the CEO of Caladrius echoed this excitement, with a sense of cautious optimism:

“The dosing of the first patient in this Phase 3 trial is an important milestone for our Company and the timing underscores our focus on this program and our commitment to impeccable trial execution. We are delighted by the enthusiasm and productivity of the team at Jefferson University (where the patient was dosed) and other trial sites around the country and look forward to translating that into optimized patient enrollment and a rapid completion of the Phase 3 trial.”

And that’s the key now. They have the science. They have the funding. Now they need the patients. That’s why we are all working together to help Caladrius recruit patients as quickly as possible. Because their work perfectly reflects our mission of accelerating the development of stem cell therapies for patients with unmet medical needs.

You can learn more about what the study involves and who is eligible by clicking here.

Using satellites to build bigger biceps

Arnold Schwarzenegger: Photo courtesy

Arnold Schwarzenegger:
Photo courtesy

There are several ways you can build bigger, stronger muscles. You can take the approach favored by our former Governor, Arnold Schwarzenegger, and pump iron till your biceps are as inflated as a birthday balloon. Or you could follow the lead of a research team we are funding and try to use stem cells to do the trick.

Our muscles contain a group of stem cells called satellite cells. These normally lie dormant until the muscle is damaged and then they spring into action to repair the injury. However, satellite cells are relatively rare and are hidden in the muscle itself, making them hard to find and notoriously difficult to study. In the past researchers have struggled to get these satellite cells to grow outside the body, which made it difficult to study muscle regeneration and develop new ways of treating muscle problems.

Finding a solution

Now a team at the University of California, San Francisco has found a solution to the problem. They started by analyzing samples of 7 different kinds of muscles (in the body, legs and head) from 43 patients. In all but two samples they found that the gene PAX7 was specifically turned on in satellite cells and the PAX7 protein was present with little variation from one muscle group to another.

Upon further sleuthing, they discovered that PAX7-positive satellite cells were the real deal because they also expressed two common cell surface markers of human satellite cells: CD29 and CD56.

The researchers then transplanted PAX7-positive cells into mice that had experienced muscle injuries. As they report in the journal Stem Cell Reports these cells not only engrafted in the mice but they also created hundreds of human-derived muscle fibers. This finding shows that satellite cells were regenerating and potentially helping to heal the damaged muscle.

What’s next

As always, anything done in mice is interesting but still needs to be replicated in people before we know for sure we are on to something.

In their conclusion the team freely admit this is just a first step but, compared to where we were before, it’s a very important step. As senior author Jason Pomerantz says:

“This is the first definitive experimental description of adult human endogenous muscle stem cell function.”

Harnessing the power of satellite cells would be of tremendous benefit to people suffering from facial paralysis, loss of hand function or muscle-wasting diseases such as sarcopenia, and could even be used as a way to deliver gene therapy to people with muscular dystrophies.

Using satellite cells to do all that, would be out of this world.

The Stem Cell Bank is open for business

Creating a stem cell bank

Creating a stem cell bank

When you go to a bank and withdraw money you know that the notes you get are all going to look the same and do the same job, namely allow you to buy things. But when you get stem cells for research that’s not necessarily the case. Stem cells bought from different laboratories don’t always look exactly the same or perform the same in research studies.

That’s why CIRM has teamed up with the Coriell Institute and Cellular Dynamics International (CDI) to open what will be the world’s largest publically available stem cell bank. It officially opened today. In September the Bank will have 300 cell lines available for purchase but plans to increase that to 750 by February 2016.

300 lines but no waiting

Now, even if you are not in the market for stem cells this bank could have a big impact on your life because it creates an invaluable resource for researchers looking into the causes of, and potential therapies for, 11 different diseases including autism, epilepsy and other childhood neurological disorders, blinding eye diseases, heart, lung and liver diseases, and Alzheimer’s disease.

The goal of the Bank – which is located at the Buck Institute for Research on Aging in Novato, California – is to collect blood or tissue samples from up to 3,000 volunteer donors. Some of those donors have particular disorders – such as Alzheimer’s – and some are healthy. Those samples will then be turned into high quality iPSCs or induced pluripotent stem cells.

Now, iPSC lines are particularly useful for research because they can be turned into any type of cell in the body such as a brain cell or liver cell. And, because the cells are genetically identical to the people who donated the samples scientists can use the cells to determine how, for example, a brain cell from someone with autism differs from a normal brain cell. That can enable them to study how diseases develop and progress, and also to test new drugs or treatments against defects observed in those cells to see which, if any, might offer some benefits.

Power of iPSCs

In a news release Kaz Hirao, Chairman and CEO of CDI, says these could be game changers:

“iPSCs are proving to be powerful tools for disease modeling, drug discovery and the development of cell therapies, capturing human disease and individual genetic variability in ways that are not possible with other cellular models.”

Equally important is that researchers in different parts of the world will be able to compare their findings because they are using the same cell lines. Right now many researchers use cell lines from different sources so even though they are theoretically the same type of tissue, in practice they often produce very different results.

Improving consistency

CIRM Board Chair, Jonathan Thomas, said he hopes the Bank will lead to greater consistency in results.

“We believe the Bank will be an extraordinarily important resource in helping advance the use of stem cell tools for the study of diseases and finding new ways to treat them. While many stem cell efforts in the past have provided badly needed new tools for studying rare genetic diseases, this Bank represents both rare and common diseases that afflict many Californians. Stem cell technology offers a critical new approach toward developing new treatments and cures for those diseases as well.”

Most banks are focused on enriching your monetary account. This bank hopes to enrich people’s lives, by providing the research tools needed to unlock the secrets of different diseases, and pave the way for new treatments.

For more information on how to buy a cell line go to or email

Cell mate: the man who makes stem cells for clinical trials

When we announced that one of the researchers we fund – Dr. Henry Klassen at the University of California, Irvine – has begun his clinical trial to treat the vision-destroying disease retinitis pigmentosa, we celebrated the excitement felt by the researchers and the hope from people with the disease.

But we missed out one group. The people who make the cells that are being used in the treatment. That’s like praising a champion racecar driver for their skill and expertise, and forgetting to mention the people who built the car they drive.

Prof. Gerhard Bauer

Prof. Gerhard Bauer

In this case the “car” was built by the Good Manufacturing Practice (GMP) team, led by Prof. Gerhard Bauer, at the University of California Davis (UC Davis).

Turns out that Gerhard and his team have been involved in more than just one clinical trial and that the work they do is helping shape stem cell research around the U.S. So we decided to get the story behind this work straight from the horse’s mouth (and if you want to know why that’s a particularly appropriate phrase to use here read this previous blog about the origins of GMP)

When did the GMP facility start, what made you decide this was needed at UC Davis?

Gerhard: In 2006 the leadership of the UC Davis School of Medicine decided that it would be important for UC Davis to have a large enough manufacturing facility for cellular and gene therapy products, as this would be the only larger academic GMP facility in Northern CA, creating an important resource for academia and also industry. So, we started planning the UC Davis Institute for Regenerative Cures and large GMP facility with a team of facility planners, architects and scientists, and by 2007 we had our designs ready and applied for the CIRM major facilities grant, one of the first big grants CIRM offered. We were awarded the grant and started construction in 2008. We opened the Institute and GMP facility in April of 2010.

How does it work? Do you have a number of different cell lines you can manufacture or do people come to you with cell lines they want in large numbers?

Gerhard: We perform client driven manufacturing, which means the clients tell us what they need manufactured. We will, in conjunction with the client, obtain the starting product, for instance cells that need to undergo a manufacturing process to become the final product. These cells can be primary cells or also cell lines. Cell lines may perhaps be available commercially, but often it is necessary to derive the primary cell product here in the GMP facility; this can, for instance, be done from whole donor bone marrow, from apheresis peripheral blood cells, from skin cells, etc.

How many cells would a typical – if there is such a thing – order request?

Gerhard: This depends on the application and can range from 1 million cells to several billions of cells. For instance, for an eye clinical trial using autologous (from the patient themselves) hematopoietic stem and progenitor cells, a small number, such as a million cells may be sufficient. For allogeneic (from an unrelated donor) cell banks that are required to treat many patients in a clinical trial, several billion cells would be needed. We therefore need to be able to immediately and adequately adjust to the required manufacturing scale.

Why can’t researchers just make their own cells in their own lab or company?

Gerhard: For clinical trial products, there are different, higher, standards than apply for just research laboratory products. There are federal regulations that guide the manufacturing of products used in clinical trials, in this special case, cellular products. In order to produce such products, Good Manufacturing Practice (GMP) rules and regulations, and guidelines laid down by both the Food and Drug Administration (FDA) and the United States Pharmacopeia need to be followed.

The goal is to manufacture a safe, potent and non-contaminated product that can be safely used in people. If researchers would like to use the cells or cell lines they developed in a clinical trial they have to go to a GMP manufacturer so these products can actually be used clinically. If, however, they have their own GMP facility they can make those products in house, provided of course they adhere to the rules and regulations for product manufacturing under GMP conditions.

Besides the UC Irvine retinitis pigmentosa trial now underway what other kinds of clinical trials have you supplied cells for?

Gerhard: A UC Davis sponsored clinical trial in collaboration with our Eye Center for the treatment of blindness (NCT01736059), which showed remarkable vision recovery in two out of the six patients who have been treated to date (Park et al., PMID:25491299, ), and also an industry sponsored clinical gene therapy trial for severe kidney disease. Besides cellular therapy products, we also manufacture clinical grade gene therapy vectors and specialty drug formulations.

For several years we have been supplying clinicians with a UC Davis GMP facility developed formulation of the neuroactive steroid “allopregnanolone” that was shown to act on resident neuronal stem cells. We saved several lives of patients with intractable seizures, and the formulation is also applied in clinical trials for the treatment of traumatic brain injury, Fragile X syndrome and Alzheimer’s disease.

What kinds of differences are you seeing in the industry, in the kinds of requests you get now compared to when you started?

Gerhard: In addition, gene therapy vector manufacturing and formulation work is really needed by several clients. One of the UC Davis specialties is “next generation” gene-modified mesenchymal stem cells, and we are contacted often to develop those products.

Where will we be in five years?

Gerhard: Most likely, some of the Phase I/II clinical trials (these are early stage clinical trials with, usually, relatively small numbers of patients involved) will have produced encouraging results, and product manufacturing will need to be scaled up to provide enough cellular products for Phase III clinical trials (much larger trials with many more people) and later for a product that can be licensed and marketed.

We are already working with companies that anticipate such scale up work and transitioning into manufacturing for marketing; we are planning this upcoming process with them. We also believe that certain cellular products will replace currently available standard medical treatments as they may turn out to produce superior results.

What does the public not know about the work you do that you think they should know?

Gerhard: The public should know that UC Davis has the largest academic Good Manufacturing Practice Facility in Northern California, that its design was well received by the FDA, that we are manufacturing a wide variety of products – currently about 16 – that we are capable of manufacturing several products at one time without interfering with each other, and that we are happy to work with clients from both academia and private industry through both collaborative and Fee-for-Service arrangements.

We are also very proud to have, during the last 5 years, contributed to saving several lives with some of the novel products we manufactured. And, of course, we are extremely grateful to CIRM for building this state-of-the-art facility.

You can see a video about the building of the GMP facility at UC Davis here.

Researchers cool to idea of ice bath after exercise

Have you ever had a great workout, really pushed your body and muscles hard and thought “You know what would be good right now? A nice plunge into an ice bath.”

No. Me neither.

Weightlifter Karyn Marshall taking an ice bath: Photo courtesy Karyn Marshall

Weightlifter Karyn Marshall taking an ice bath: Photo courtesy Karyn Marshall

But some people apparently believe that taking an ice bath after a hard workout can help their muscles rebound and get stronger.

It’s a mistaken belief, at least according to a new study from researchers at the Queensland University of Technology (QUT) and the University of Queensland (UQ) in Australia. They are – pardon the pun – giving the cold shoulder to the idea that an ice bath can help hot muscles recover after a hard session of strength training.

The researchers got 21 men who exercise a lot to do strength training twice a week for 12 weeks. One group then agreed – and I’d love to know how they persuaded them to do this – to end the training session by jumping into a 50 degrees Fahrenheit (10 Celsius) ice bath. The other group – let’s label them the “sensible brigade” – ended by doing their cool down on an exercise bike.

Happily for the rest of us at the end of the 12 weeks the “sensible brigade” experienced more gains in muscle strength and muscle mass than the cool kids.

So what does this have to do with stem cells? Well the researchers say the reason for this result is because our bodies use so-called satellite cells – which are a kind of muscle stem cell – to help build stronger muscles. When you plunge those muscles into a cold bath you effectively blunt or block the ability of the muscle stem cells to work as well as they normally would.

But the researchers weren’t satisfied just putting that particular theory on ice, so in a second study they took muscle biopsies from men after they had done leg-strengthening exercises. Again, half did an active cool down, the others jumped in the ice bath.

In a news release accompanying the article in the The Journal of Physiology, Dr Llion Roberts, from UQ’s School of Human Movement and Nutrition Sciences, said the results were the same:

“We found that cold water immersion after training substantially attenuated, or reduced, long-term gains in muscle mass and strength. It is anticipated that athletes who use ice baths after workouts would see less long-term muscle gains than those who choose an active warm down.”

The bottom line; if you strain a muscle working out ice is your friend because it’s great for reducing inflammation. If you want to build stronger muscles ice is not your friend. Save it for that nice refreshing beverage you have earned after the workout.


Da Mayor and the clinical trial that could help save his vision

Former San Francisco Mayor and California State Assembly Speaker Willie Brown is many things, but shy is not one of them. A profile of him in the San Francisco Chronicle once described him as “Brash, smart, confident”. But for years Da Mayor – as he is fondly known in The City – said very little about a condition that is slowly destroying his vision. Mayor Brown has retinitis pigmentosa (RP).

RP is a degenerative disease that slowly destroys a person’s sight vision by attacking and destroying photoreceptors in the retina, the light-sensitive area at the back of the eye that is critical for vision. At a recent conference held by the Everylife Foundation for Rare Diseases, Mayor Brown gave the keynote speech and talked about his life with RP.

Willie Brown

He described how people thought he was being rude because he would walk by them on the streets and not say hello. The truth is, he couldn’t see them.

He was famous for driving fancy cars like Bentleys, Maseratis and Ferraris. When he stopped doing that, he said, “people thought I was broke because I no longer had expensive cars.” The truth is his vision was too poor for him to drive.

Despite its impact on his life RP hasn’t slowed Da Mayor down, but now there’s a new clinical trial underway that might help him, and others like him, regain some of that lost vision.

The trial is the work of Dr. Henry Klassen at the University of California, Irvine (UCI). Dr. Klassen just announced the treatment of their first four patients, giving them stem cells that hopefully will slow down or even reverse the progression of RP.

“We are delighted to be moving into the clinic after many years of bench research,” Klassen said in a news release.

The patients were each given a single injection of retinal progenitor cells. It’s hoped these cells will help protect the photoreceptors in the retina that have not yet been damaged by RP, and even revive those that have become impaired but not yet destroyed by the disease.

The trial will enroll 16 patients in this Phase 1 trial. They will all get a single injection of retinal cells into the eye most affected by the disease. After that, they’ll be followed for 12 months to make sure that the therapy is safe and to see if it has any beneficial effects on vision in the treated eye, compared to the untreated one.

In a news release Jonathan Thomas, Ph.D., J.D., Chair of the CIRM Board said it’s always exciting when a therapy moves out of the lab and into people:

“This is an important step for Dr. Klassen and his team, and hopefully an even more important one for people battling this devastating disease. Our mission at CIRM is to accelerate the development of stem cell therapies for patients with unmet medical needs, and this certainly fits that bill. That’s why we have invested almost $19 million in helping this therapy reach this point.”

RP hasn’t defeated Da Mayor. Willie Brown is still known as a sharp dresser and an even sharper political mind. His message to the people at the Everylife Foundation conference was, “never give up, keep striving, keep pushing, keep hoping.”

To learn more about the study or to enroll contact the UCI Alpha Stem Cell Clinic at 949-824-3990 or by email at

And visit our website to watch a presentation about the trial (link) by Dr. Klassen and to hear brief remarks from one of his patients.

Creativity sparks a bright future for science

When some people want to see the future they use a crystal ball. Others use tarot cards or runes. But when anyone at CIRM wants to see the future all we have to do is look into the faces of the students in our Creativity program.

Creativity students 2015 with program director Dr. Mani Vessal (front & center with tie)

Creativity students 2015 with program director Dr. Mani Vessal (front & center with tie)

Over the past three years the Creativity program has given some 220 California high school students a chance to spend the summer working in a world-class stem cell research facility. And when I say work, I mean work. They are required to attend lectures, grow their own stem cells, and do experiments. In short, they are expected to do what all the other scientists in the lab do. In return they get a great experience, and a modest stipend for their effort. At the end they produce papers on their work with titles like:

  • Notch Signaling as a Possible Regulator of Mesenchymal Stromal Cell Differentiation in the Hematopoietic Stem Cell Niche
  • RNA Splicing Factor ZRSR2 in Human Erythroleukemia and Stem Cells

We also ask the students to either write a blog or create a video about their experiences over the summer. Many do both. We’ll come back to the video portion later this week. The blogs make for a great read because they chart the students as they progress from knowing little if anything about stem cells, to being quite proficient at working with them. And all in just 8 weeks. One of the hardest parts of our job is choosing the best blog. For example Alice Lin, part of the City of Hope program, got an honorable mention for her blog that was a “diary” written by an embryonic stem cell. Here’s a small sample of her approach:

‘Also, this is NOT YOUR TYPICAL LAB JOURNAL ENTRY. It’s an autobiography chronicling my life. That way, when the stem cell controversy cools down, the general public can get a FIRST HAND ACCOUNT of what we do. This blog is going to rack up some serious views someday. Until then, I’m attached to my colony and the plate.’

Ryan Hale, part of the Scripps team, wrote about how the experience taught him to think like a scientist:

‘One day, after performing an experiment, our mentor asked us the reason behind our experiment. He wasn’t asking us about the experimental procedure or quizzing us on the pre-reading packet, he wanted us to understand the thought process a researcher would go through to actually think up such an experiment… Our mentor stressed how important it is to be creative, inquisitive, and critical if one wants to become a successful researcher.’

Selena Zhang

Selena Zhang

The winner was Selena Zhang, also part of the City of Hope team. She writes about her experiences in the lab, learning the ropes, getting to understand the technology and language of science. But it’s her closing paragraph that sealed the deal for us. In a few short sentences she manages to capture the romance, the mystery and the magic of science. And we’re also happy to say that this program is coming back next year, and the year after that, for five more years. Our Board has just approved renewed funding. The name of the program is changing, it will be called SPARK, but the essence will remain the same. Giving young students a glimpse at a future in science. You don’t need a crystal ball to know that with these students the future is bright. Here’s Selena’s winning blog:

My very own lab coat. It was a lot to live up to, my freshly laundered lab coat with the City of Hope logo. Looking around the lab, I was nervous and excited to start my very first day. There were papers to read and meetings with my mentor to hear about my project. I was starstruck, as I learned that I would be working with induced pluripotent stem cells, Alzheimer’s disease, and CRISPR. Terms that seemed to only exist in textbooks and science magazines that I lovingly read at the library were suddenly alive to me. Although, embarrassingly enough, the only thing that came to mind when my mentor mentioned CRISPR was a salad crisper. Fairly certain that she was a) speaking about something else and b) that I needed to eat more for breakfast, I asked her what that was. It turned out that CRISPR was a new genome editing tool we could use to create isogenic lines to study the independent effects of each allele of the APOE gene that is the most significant risk factor for Alzheimer’s. We would do this by converting a patient and wild-type fibroblast into induced pluripotent stem cells. From this, we would edit a normal allele into the patient’s cell for rescue and the mutated allele in the wild-type cell for insertion, respectively. We would eventually differentiate these cells into neurons and astrocytes to study how the change of this allele can impact neural interaction. This was real science in progress, not enshrined in a textbook, but free, fluid, and vibrant. I slowly grew into my own independence around the lab. I found myself more confident and emotionally invested with each experiment, every immunostaining and PCR. Science, for all of its realism, had always seemed like the unimaginable fantasy to me. Through this opportunity, science has become more tangible, grounded in unglamorous details: hard work and deadlines, mistakes and mishaps, long lab meetings and missed lunches. Yet, that has only made me more confident that I want to pursue science. Now, I’m embracing a reality, one that gives me something worth striving for. In fact, I am very fortunate that my project has encountered numerous obstacles. My initial response to these problems was and still is a lot less Zen and a lot more panic-driven. But I’ve slowly come to realize the beauty of the troubleshooting process for progress. My project has been an emotional rollercoaster, as our rescue cell line met success, but couldn’t advance to the next stage. Our insertion cell line appeared to have incorporated the mutation, but it turned out it only incorporated one allele. It’s been a process of finding the balance between defending our ideas and accepting new ones, the border between defending and defensiveness. My curiosity and drive to improve, to understand, to conquer the unknown is learning to coexist with the need for patience and flexibility No matter how solid our theory should have been, reality is fickle and all the more interesting for it. I thought science was all about doubt and skepticism, questioning everything. Through this internship, I’ve learned that there’s also a surprising amount of faith, the faith to accept any setbacks as part of the discovery process. I thought I loved science before because I loved how enough facts could help me make sense of things. But through this internship in the lab, I’m learning to love a larger part of science, which is not only loving knowledge, but also loving not knowing, loving discovery for all of its uncertainty and perfect imperfections. I’m learning to grow into my lab coat, and hopefully, to find my place in the field of science.