Creative partnerships that promote progress

Lewis and Clark: great partnerships can change the world

Lewis and Clark: great partnerships can change the world

Having a good partner can turn something good into something truly memorable. Where would Laurel be without Hardy, Lewis without Clark, Butch Cassidy without the Sundance Kid. That’s why the stem cell agency has partnerships on a number of different levels as part of our mission of accelerating the development of stem cell cures to patients with unmet medical needs.

Our latest partnership is with RegMedNet which, in its own words, “provides a unique and unparalleled platform for the regenerative medicine community to share insights, discuss the latest research, and help move the field forward.” With a goal like that why would we not want to support them?

Like us RegMedNet believes that regenerative medicine is going to completely change the way we treat disease, even the way we think about disease. They also believe that progress of the kind we all want is only going to come by bringing together all the key players from the researchers and manufacturers, to the government regulators and, of course, the patient advocates. Each has a vital role to play in moving the field forward and RegMedNet reflects that in both the content it posts online and in the contributors, who represent institutions and companies worldwide.

One of the most important elements in any partnership is understanding, and RegMedNet does a great job of trying to raise awareness about the field, the challenges we all face, and the progress being made. Bringing together so many different perspectives in one spot really helps create a much deeper understanding of regenerative medicine as a whole.

In a few short years regenerative medicine has gone from a relatively small field to a global industry. Our hope is that creating partnerships with like-minded groups around the world, is going to help it get even bigger and, even better.

New tech tool speeds up stem cell research

It’s hard to do a good job if you don’t have the right tools. Now researchers have access to a great new tool that could really help them accelerate their work, a tool its developers say “will revolutionize the way cell biologists develop” stem cell models to test in the lab.

Fluidigm's Castillo system

Fluidigm’s Callisto system

The device is called Callisto™. It was created by Fluidigm thanks to two grants from CIRM. The goal was to develop a device that would allow researchers more control and precision in the ways that they could turn stem cells into different kinds of cell. This is often a long, labor-intensive process requiring round-the-clock maintenance of the cells to get them to make the desired transformation.

Callisto changes that. The device has 32 chambers, giving researchers more control over the conditions that cells are stored in, even allowing them to create different environmental conditions for different groups of cells. All with much less human intervention.

Lila Collins, Ph.D., the CIRM Science Officer who has worked closely with Fluidigm on this project over the years, says this system has some big advantages over the past:

“Creating the optimal conditions for reprogramming, stem cell culture and stem cells has historically been a tedious and manually laborious task. This system allows a user to more efficiently test a variety of cellular stimuli at various times without having to stay tied to the bench. Once the chip is set up in the instrument, the user can go off and do other things.”

Having a machine that is faster and easier to use is not the only advantage Callisto offers, it also gives researchers the ability to systematically and simultaneously test different combinations of factors, to see which ones are most effective at changing stem cells into different kinds of cell. And once they know which combinations work best they can use Callisto to reproduce them time after time. That consistency means researchers in different parts of the world can create cells under exactly the same conditions, so that results from one study will more readily support and reflect results from another.

In a news release about Callisto,  Fluidigm’s President and CEO Gajus Worthington, says this could be tremendously useful in developing new therapies:

“Fluidigm aims to enable important research that would otherwise be impractical. The Callisto system incorporates some of our finest microfluidic technology to date, and will allow researchers to quickly and easily create complex cell culture environments. This in turn can help reveal how stems cells make fate decisions. Callisto makes challenging applications, such as cellular reprogramming and analysis, more accessible to a wide range of scientists. We believe this will move biological discovery forward significantly.”

And as Collins points out, Callisto doesn’t just do this on a bulk level, working with millions of cells at a time, the way the current methods do:

“Using a bulk method it’s possible that one might miss an important event in the mixture. The technology in this system allows the user to stimulate and study individual cells. In this way, one could measure changes in small sub-populations and find ways to increase or decrease them.”

Having the right tools doesn’t always mean you are going to succeed, but it certainly makes it a lot easier.

How one strong ARM can create a community

I spent the last two days at the annual Washington meeting of the Alliance for Regenerative Medicine (ARM), the advocacy organization that CIRM became a founding member of in 2009. Having been CIRM’s representative at that first organizing meeting it has been a pleasure to see the organization mature into an effective advocacy group for our field. It has lived up to its goal of creating a community where all the stakeholders in the field, from academic and industry leaders to patient advocates and investors, can come together in a coordinated front.

ARM and CIRM share the goal of accelerating the development of regenerative therapies to patients with unmet medical needs. The organization also dovetails well with our effort to inform the public about the great hope in the field. To quote ARM’s website: “ARM also works to increase public understanding of the field and its potential to transform human healthcare.”

But that transformation can be fostered or impeded by actions in our nation’s capital, both regulatory and legislative, the main thrust of the past two days’ activities.

While the iconic Capitol building is the most recognized footprint of our Congress, it is the House and Senate office buildings that ring three sides of the Capitol where most of the work gets done, like in the Rayburn building, which houses the office of Dianna DeGette, the Colorado congresswoman and champion of regenerative medicine.

While the iconic Capitol building is the most recognized footprint of our Congress, it is the House and Senate office buildings that ring three sides of the Capitol where most of the work gets done, like in the Rayburn building, which houses the office of Dianna DeGette, the Colorado congresswoman and champion of regenerative medicine.

ARM members presented three specific proposals for advancing the field to members of congress and their staffs. These would:

  • Create a center of excellence to develop technical and process standards for regenerative medicine. Not very sexy on the surface, but agreement in advance on what regulators will accept in creating a new product can shave months or years off the development of needed therapies.
  • Create a special pathway within the Food and Drug Administration—much like the one created for orphan diseases—for “Qualified Regenerative Medicine Products (QRMPs). These products would have shown potential to change the course of a disease with currently unmet medical needs and the FDA would be required to meet with their sponsors to discuss expedited review of the product.
  • Advocate for the adoption of a national regenerative medicine strategy that includes federal agency coordination, support for research and regulatory reform to create a clear and predictable pathway that enables quick approval of safe and effective products. To accomplish that ARM has promoted the establishment of a Regenerative Medicine Coordinating Council within the U.S. Department of Health & Human Services.
Jamie Goldfarb with her son Kai and husband Jeff. Photo courtesy Melanoma Research Alliance

Jamie Goldfarb with her son Kai and husband Jeff.
Photo courtesy Melanoma Research Alliance

Jamie Goldfarb, who beat back melanoma with the help of a cell-based immune therapy, made a clear and passionate case for the urgency of making it easier to get these therapies to patients at the ARM member dinner Tuesday night:

“Enhanced awareness for the power of regenerative medicine means a world of difference. It means less suffering, less pain, less fear, less expense, less hardship, less loss. It also means more hope, more determination, more love, more strength for individuals and for society as a whole. Every person in this room and those organizations you represent are improving lives.”

Don Gibbons

One man’s story points to hope against a deadly skin cancer

One of the great privileges and pleasures of working at the stem cell agency is the chance to meet and work with some remarkable people, such as my colleagues here at CIRM and the researchers we support. But for me the most humbling, and by far the most rewarding experience, is having a chance to get to know the people we work for, the patients and patient advocates.

Norm Beegun, got stem cell therapy for metastatic melanoma

Norm Beegun, got stem cell therapy for metastatic melanoma

At our May Board meeting I got to meet a gentleman who exemplifies everything that I truly admire about the patients and patient advocates. His name is Norm Beegun. And this is his story.

Norm lives in Los Angeles. In 2002 he went to see his regular doctor, an old high school friend, who suggested that since it had been almost ten years since he’d had a chest x-ray it might be a good idea to get one. At first Norm was reluctant. He felt fine, was having no health problems and didn’t see the need. But his friend persisted and so Norm agreed. It was a decision that changed, and ultimately saved, his life.

The x-ray showed a spot on his lung. More tests were done. They confirmed it was cancer; stage IV melanoma. They did a range of other examinations to see if they could spot any signs of the cancer on his skin, any potential warnings signs that they had missed. They found nothing.

Norm underwent surgery to remove the tumor. He also tried several other approaches to destroy the cancer. None of them worked; each time the cancer returned; each time to a different location.

Then a nurse who was working with him on these treatments suggested he see someone named Dr. Robert Dillman, who was working on a new approach to treating metastatic melanoma, one involving cancer stem cells.

Norm got in touch with Dr. Dillman and learned what the treatment involved; he was intrigued and signed up. They took some cells from Norm’s tumor and processed them, turning them into a vaccine, a kind of personalized therapy that would hopefully work with Norm’s own immune system to destroy the cancer.

That was in 2004. Once a month for the next six months he was given injections of the vaccine. Unlike the other therapies he had tried this one had no side effects, no discomfort, no pain or problems. All it did was get rid of the cancer. Regular scans since then have shown no sign that the melanoma has returned. Theoretically that could be because the new therapy destroyed the standard tumor cells as well as the cancer stem cells that lead to recurrence.

Norm says when you are diagnosed with an incurable life-threatening disease, one with a 5-year survival rate of only around 15%, you will try anything; so he said it wasn’t a hard decision to take part in the clinical trial, he felt he had nothing to lose.

“I didn’t know if it would help me. I didn’t think I’d be cured. But I wanted to be a guinea pig and perhaps help others.”

When he was diagnosed his son had just won a scholarship to play football at the University of California, Berkeley. Norm says he feared he would never be able to see his son play. But thanks to cleverly scheduling surgery during the off-season and having a stem cell therapy that worked he not only saw his son play, he never missed a game.

Norm returned to Berkeley on May 21st, 2015. He came to address the CIRM Board in support of an application by a company called NeoStem (which has just changed its name to Caladrius Biosciences). This was the company that had developed the cell therapy for metastatic melanoma that Norm took.

“Talking about this is still very emotional. When I got up to talk to the CIRM Board about this therapy, and ask them to support it, I wanted to let them know my story, the story of someone who had their life saved by this treatment. Because of this I am here today. Because of this I was able to see my son play. But just talking about it left me close to tears.”

It left many others in the room close to tears as well. The CIRM Board voted to fund the NeoStem application, investing $17.7 million to help the company carry out a Phase 3 clinical trial, the last hurdle it needs to clear to prove to the Food and Drug Administration that this should be approved for use in metastatic melanoma.

Norm says he is so grateful for the extra years he has had, and he is always willing to try and support others going through what he did:

“I counsel other people diagnosed with metastatic melanoma. I feel that I want to help others, to give them a sense of hope. It is such a wonderful feeling, being able to show other people that you can survive this disease.”

When you get to meet people like Norm, how could you not love this job.

Faster, better, more efficient. Challenging? That too. An update on CIRM 2.0.

Changing direction is never easy. The greater the change the greater the likelihood you’ll have to make adjustments and do some fine-tuning along the way to make sure you get it right.

On January 1st of this year we made a big change, launching CIRM 2.0. Our President and CEO Dr. C. Randal Mills called it “a radical overhaul of the way the Agency does business.” This new approach puts the emphasis on patients, partnerships and speed and cuts down the time from application to funding of clinical-stage projects from around two years to just 120 days.

You can read more about 2.0 here.

So, several months into the program how are we doing?

Clinical stage of CIRM 2.0 has three programs

Clinical stage of CIRM 2.0 has three programs

Well, since January 1st we have had three application tracks under 2.0 that reflect our goal of accelerating therapies to patients with unmet medical needs. These focus on late stage work to either get a promising therapy into a clinical trial, to carry out a clinical trial, or to help a promising project move even faster.

Under those three programs we have had 12 applications for funding, for a total request of $111 million. With application deadlines the last business day of each month two of those were in January, two in February, three more in March and five in April.

As Dr. Mills told our governing Board when they met last week, that number is more than we were expecting:

 “When we started the program we calculated there’d be around one or two applications a month, not five. I don’t think having five applications a month is sustainable, but that’s probably just the backlog, the pent up demand for funding, working its way through the system. For now we can cope with that volume.”

Interestingly eight of those applications were for funding for clinical trials:

  • Two for Phase 1
  • One for Phase 2
  • Five for Phase 3

Last week our Board approved one of those Phase 3 trials (the last big hurdle to clear before the Food and Drug Administration will consider approving it for wider use), investing almost $18 million in NeoStem’s therapy for one of the deadliest forms of skin cancer, metastatic melanoma.

This is the first time we have ever funded a Phase 3 trial. So, quite a milestone for us. But it may well not be the last one. The Board also approved a project to conduct the late preclinical work needed to apply to conduct a trial in retinitis pigmentosa.

Dr. Mills said there are two clear patterns so far:

“We are getting a more mature portfolio of clinical stage programs for adjudication. We are also starting to see requests for accelerating activities, where we have made previous awards to researchers who now have identified new ways to accelerate that work and they are turning to us for help in doing that.”

Of the 12 applications received we have screened all of them within the 7-day target window to make sure they meet funding criteria. Some have been ruled out for not being within the scope of the award program. The accepted applications have all had budget reviews and been sent on for expert analysis within the slated time frames.

We had a couple of hiccups with our first review but that resulted from on-line technology and getting everyone comfortable with the new rules we were bringing in. The second review resulted in the first two awards by our Board last week, and the third review occurred yesterday.

“The bottom line is things are moving through and things are being weeded out. In March we had two clinical stage applications and one add-on funding application but that one add-on failed in screening. So, in general CIRM 2.0 is being well utilized. There’s no question we are significantly reducing application time from application to funding, attracting later stage applications. Clearly this has not been without its challenges but the team is doing a great job of managing everything.”

And remember this is only the first part of CIRM 2.0. We have two other programs, for Discovery or basic research and Translational research, that are being developed and we plan on rolling those out later this summer.

Stay tuned for more details on those programs.

Two for 2.0 and Two for us

It began as an ambitious idea; yesterday it became a reality when the CIRM Board approved two projects under CIRM 2.0, one of them a Phase 3 clinical trial for a deadly form of skin cancer.

Just to recap, CIRM 2.0 was introduced by Dr. C. Randal Mills when he took over as President and CEO of the stem cell agency last year. The idea is to speed up the way we work, to get money to the most promising therapies and the best science as quickly as possible. It puts added emphasis on speed, patients and partnerships.

Yesterday our Board approved the first two projects to come before them under this new way of working. One was for almost $18 million for NeoStem, which is planning a Phase 3 clinical trial for metastatic melanoma, a disease that last year alone claimed more than 10,000 lives in the U.S.

This will be the first Phase 3 trial we have funded so clearly it’s quite a milestone for us and for NeoStem. If it proves effective in this trial it could well be approved by the Food and Drug Administration (FDA) for use in melanoma patients. The therapy itself is unique in that it uses the patient’s own tumor cells to create a personalized therapy, one that is designed to engage the patient’s immune system and destroy the cancer.

The Board also approved almost $5 million for Cedars-Sinai in Los Angeles to do the late-stage research needed to apply to the FDA for approval for a clinical trial to treat retinitis pigmentosa (RP). RP is a nasty, degenerative condition that slowly destroys a patient’s vision. There is no cure and no effective therapy.

We are currently funding another clinical trial in this area. The two projects use different types of cells and propose different methods of reducing RP’s devastation. CIRM has a record of trying multiple routes to achieve success when dealing with unmet medical needs.

As Dr. Mills said in a news release, both the therapies approved for funding yesterday support our mission:

“CIRM 2.0 is designed to accelerate the development of treatments for people with unmet medical needs, and these two projects clearly fit that description. With the Board’s approval today we will now get this work up and running within the next 45 days. But that’s just the start. We are not just providing financial support, we are also partnering with these groups to provide expertise, guidance and other kinds of support that these teams need to help them be successful. That’s the promise of CIRM 2.0. Faster funding, better programs and a more comprehensive approach to supporting their progress.”

CIRM Chair Jonathan Thomas swearing in new Board members Adriana Padilla and Bob Price

CIRM Chair Jonathan Thomas swearing in new Board members Adriana Padilla and Bob Price

Two seemed to be the number of the day yesterday with the Board welcoming two new members.

Dr. Adriana Padilla is the new Patient Advocate Board member for type 2 Diabetes. She’s a family physician, a member of the University of California, San Francisco-Fresno medical faculty, and an award-winning researcher with expertise in diabetes and its impact on Latino families and the health system in California’s Central Valley. She is also active in the National Hispanic Medical Association (NHMA) and is also a member of the American Diabetes Association.

Dr. Padilla said she hopes her presence will help increase awareness among Latinos of the importance of the work the agency is doing:

“When I was asked about being on the Board I did some research to find out more and it was really touching to learn about some of the exciting work that has been done by the agency and the possibilities that can be done for patients, including those I serve, members of the Latino community.”

Dr. Bob Price is the Associate Vice Chancellor for Research and a Professor of Political Science at U.C. Berkeley. His academic and teaching interests include comparative politics, with a particular interest in the politics of South Africa. This is Dr. Price’s second time on the Board.  He previously served as the alternate to UC Berkeley Chancellor Robert Birgeneau.

Although he has only been off the Board for a little more than a year Dr. Price said he is aware of the big changes that have taken place in that time and is looking forward to being a part of the new CIRM 2.0.

How stimulating! A new way to repair broken bones

For those of us who live in earthquake country the recent devastating quakes in Nepal are a reminder, as if we needed one, of the danger and damage these temblors can cause. Many of those injured in the quake suffered severe bone injuries – broken legs, crushed limbs etc. Repairing those injuries is going to take time and expert medical care. But now a new discovery is opening up the possibility of repairing injuries like this, even regenerating the broken bones, in a more efficient and effective way.

shutterstock_18578173A study published in Scientific Reports  shows that it is possible to regrow bone tissue using protein signals from stem cells. Even more importantly is that this new bone tissue seems to be just as effective, in terms of the quantity and quality of the bone created, as the current methods.

In a news release senior author Todd McDevitt, Ph.D., said this shows we might not even need whole stem cells to regenerate damaged tissue:

“This proof-of-principle work establishes a novel bone formation therapy that exploits the regenerative potential of stem cells. With this technique we can produce new tissue that is completely stem cell-derived and that performs similarly with the gold standard in the field.”

McDevitt – who is now at the Gladstone Institutes thanks to a research leadership award from CIRM  – extracted the proteins that stem cells produce to help regenerate damaged tissues. They then isolated the particular factors they needed to help regenerate bones, in this case bone morphogenetic protein or BMP. That BMP was then transplanted into mice to stimulate bone growth. And it worked.

While this compares favorably to current methods of regenerating or repairing damaged bones it has a few advantages. Current methods rely on getting bones from cadavers and grinding them up to get the growth factors needed to stimulate bone growth. But bones from cadavers can often be in short supply and the quality is highly variable.

As McDevitt says:

“These limitations motivate the need for more consistent and reproducible source material for tissue regeneration. As a renewable resource that is both scalable and consistent in manufacturing, pluripotent stem cells are an ideal solution.”

He says the next step is to build on this research, and try to find ways to make this method even more efficient. If he succeeds he says it could open up new ways of treating devastating injuries such as those sustained by soldiers in battle, or by earthquake victims.

A hopeful sight: therapy for vision loss cleared for clinical trial

Rosalinda Barrero

Rosalinda Barrero, has retinitis pigmentosa

Rosalinda Barrero says people often thought she was rude, or a snob, because of the way she behaved, pretending not to see them or ignoring them on the street. The truth is Rosalinda has retinitis pigmentosa (RP), a nasty disease, one that often attacks early in life and slowly destroys a person’s vision. Rosalinda’s eyes look normal but she can see almost nothing.

“I’ve lived my whole life with this. I told my daughters [as a child] I didn’t like to go Trick or Treating at Halloween because I couldn’t see. I’d trip; I’d loose my candy. I just wanted to stay home.”

Rosalinda says she desperately wants a treatment:

“Because I’m a mom and I would be so much a better mom if I could see. I could drive my daughters around. I want to do my part as a mom.”

Now a promising therapy for RP, funded by the stem cell agency, has been cleared by the Food and Drug Administration (FDA) to start a clinical trial in people.

The therapy was developed by Dr. Henry Klassen at the University of California, Irvine (UCI). RP is a relatively rare, inherited condition in which the light-sensitive cells at the back of the retina, cells that are essential for vision, slowly and progressively degenerate. Eventually it can result in blindness. There is no cure and no effective long-term treatment.

Dr. Klassen’s team will inject patients with stem cells, known as retinal progenitors, to help replace those cells destroyed by the disease and hopefully to save those not yet damaged.

In a news release about the therapy Dr. Klassen said the main goal of this small Phase I trial will be to make sure this approach is safe:

“This milestone is a very important one for our project. It signals a turning point, marking the beginning of the clinical phase of development, and we are all very excited about this project.”

Jonathan Thomas, the Chair of our Board, says that CIRM has invested almost $20 million to help support this work through early stage research and now, into the clinic.

“One of the goals of the agency is to provide the support that promising therapies need to progress and ultimately to get into clinical trials in patients. RP affects about 1.5 million people worldwide and is the leading cause of inherited blindness in the developed world. Having an effective treatment for it would transform people’s lives in extraordinary ways.”

Dr. Klassen says without that support it is doubtful that this work would have progressed as quickly as it has. And the support doesn’t just involve money:

“CIRM has played a critical and essential role in this project. While the funding is extremely important, CIRM also tutors and guides its grantees in the many aspects of translational development at every step of the way, and this accelerates during the later pre-clinical phase where much is at stake.”

This is now the 12th project that we are funding that has been approved by the FDA for clinical trials. It’s cause for optimism, but cautious optimism. These are small scale, early phase trials that in many cases are the first time these therapies have been tested in people. They look promising in the lab. Now it’s time to see if they are equally promising in people.

Considering we didn’t really start funding research until 2007 we have come a long way in a short time. Clearly we still have a long way to go. But the news that Dr. Klassen’s work has been given the go-ahead to take the next, big step, is a hopeful sign for Rosalinda and others with RP that we are at least heading in the right direction.

One of our recent Spotlight on Disease videos features Dr. Klassen and Rosalinda Barrero talking about RP.

This work will be one of the clinical trials being tested in our new Alpha Stem Cell Clinic Network. You can read more about that network here.

Goodnight, Stem Cells: How Well Rested Cells Keep Us Healthy

Plenty of studies show that a lack of sleep is nothing but bad news and can contribute to a whole host of health problems like heart disease, poor memory, high blood pressure and obesity.

HSCs_Sleeping_graphic100x100

Even stem cells need rest to stay healthy

In a sense, the same holds true for the stem cells in our body. In response to injury, adult stem cells go to work by dividing and specializing into the cells needed to heal specific tissues and organs. But they also need to rest for long-lasting health. Each cell division carries a risk of introducing DNA mutations—and with it, a risk for cancer. Too much cell division can also deplete the stem cell supply, crippling the healing process. So it’s just as important for the stem cells to assume an inactive, or quiescent, state to maintain their ability to mend the body. Blood stem cells for instance are mostly quiescent and only divide about every two months to renew their reserves.

Even though the importance of this balance is well documented, exactly how it’s achieved is not well understood; that is, until now. Earlier this week, a CIRM-funded research team from The Scripps Research Institute (TSRI) reported on the identification of an enzyme that’s key in controlling the work-rest balance in blood stem cells, also called hematopoietic stem cells (HSCs). Their study, published in the journal Blood, could point the way to drugs that treat anemias, blood cancers, and other blood disorders.

Previous studies in other cell types suggested that this key enzyme, called ItpkB, might play a role in promoting a rested state in HSCs. Senior author Karsten Sauer explained their reasoning for focusing on the enzyme in a press release:

“What made ItpkB an attractive protein to study is that it can dampen activating signaling in other cells. We hypothesized that ItpkB might do the same in HSCs to keep them at rest. Moreover, ItpkB is an enzyme whose function can be controlled by small molecules. This might facilitate drug development if our hypothesis were true.”

Senior author Karsten Sauer is an associate professor at The Scripps Research Institute.

Senior author Karsten Sauer is an associate professor at The Scripps Research Institute.

To test their hypothesis, the team studied HSCs in mice that completely lacked ItpkB. Sure enough, without ItpkB the HSCs got stuck in the “on” position and continually multiplied until the supply of HSCs stores in the bone marrow were exhausted. Without these stem cells, the mice could no longer produce red blood cells, which deliver oxygen to the body or white blood cells, which fight off infection. As a result the animals died due to severe anemia and bone marrow failure. Sauer used a great analogy to describe the result:

“It’s like a car—you need to hit the gas pedal to get some activity, but if you hit it too hard, you can crash into a wall. ItpkB is that spring that prevents you from pushing the pedal all the way through.”

With this new understanding of how balancing stem cell activation and deactivation works, Sauer and his team have their sights set on human therapies:

“If we can show that ItpkB also keeps human HSCs healthy, this could open avenues to target ItpkB to improve HSC function in bone marrow failure syndromes and immunodeficiencies or to increase the success rates of HSC transplantation therapies for leukemias and lymphomas.”

The best tools to be the best advocate

It’s hard to do a good job if you don’t have the right tools. And that doesn’t just apply to fixing things around the house, it applies to all aspects of life. So, in launching our new website this week we didn’t just want to provide visitors to the site with a more enjoyable and engaging experience – though we hope we have done that – we also wanted to provide a more informative and helpful experience. That’s why we have created a whole new section call the Patient Advocate Toolbox. shutterstock_150769385

The goal of the Toolbox is simple; to give patients and patient advocates help in learning the skills they need to be as effective as possible about raising awareness for their particular cause.

As an advocate for a disease or condition you may be asked to speak at public events, to be part of a panel discussion at a conference, or to do an interview with a reporter. Each of those requires a particular set of skills, in areas that many of us may have little, if any, experience in.

That’s where the Toolbox comes in. Each section deals with a different opportunity for you to share your story and raise awareness about your cause.

In the section on “Media Interviews”, for example, we walk you through the things you need to think about as you prepare to talk to a reporter; the questions to ask ahead of time, how to prepare a series of key messages, even how to dress if you are going to be on TV. The idea is to break down some of the mystique surrounding the interview, to let you know what to expect and to help you prepare as fully as possible.

If you are going to be asked questions about stem cell research there’s a section in the Toolbox called “Jargon-Free Glossary” that translates scientific terms into every-day English, so you can talk about this work in a way that anyone can understand.

There’s also a really wonderfully visual infographic on the things you need to know when thinking about taking part in a clinical trial. It lays out in simple, easy-to-follow steps the questions you should ask, the potential benefits and problems of being in a trial, including the risks of going overseas for unproven therapies.

The Toolbox is by no means an exhaustive list of all the things you will need to know to be an effective advocate, either for yourself or a friend or loved one, but it is a start.

We would love to hear from you on ways we can improve the content, on other elements that would be useful to include, on links to other sites that you think would be helpful to add. Our goal is to make this as comprehensive and useful as possible. Your support, your ideas and thoughts will help us do just that. If you have any comments please send them to info@cirm.ca.gov

Thomas Carlyle, the Scottish philosopher, once wrote: “Man is a tool-using animal. Without tools he is nothing, with tools he is all.” That’s why we want to give you the tools you need to be as effective as you can. Because the more powerful your voice, the more we all benefit.