Super stem cell exhibit opens in San Diego

Stem cell exhibit

The best science museums are like playgrounds. They allow you to wander around, reading, watching and learning and being amazed as you go. It’s not just a feast for the mind; it’s also fun for the hands.  You get to interact with and experience science, pushing buttons, pulling levers, watching balls drop and electricity spark.

The best science museums bring out the kid in all of us.

This Saturday a really great science museum is going to be host to a really great exhibition. The Reuben H. Fleet Science Center in San Diego is the first stop on a California tour for “Super Cells: The Power of Stem Cells”. The exhibit is coming here fresh from a successful tour of Canada and the UK.

The exhibit is a “hands-on” educational display that demonstrates the importance and the power of stem cells, calling them “our body’s master cells.” It uses animations, touch-screen displays, videos and stunning images to engage the eyes and delight the brain.

stem cell exhibit 2Each of the four sections focuses on a different aspect of stem cell research, from basic explanations about what a stem cell is, to how they change and become all the different cells in our body. It has a mini laboratory so visitors can see how research is done; it even has a “treatment” game where you get to implant and grow cells in the eye, to see if you can restore sight to someone who is blind.

 

In a news release the Fleet Science Center celebrated the role that stem cells play in our lives:

“Stem cells are important because each of us is the result of only a handful of tiny stem cells that multiply to produce the 200 different types of specialized cells that exist in our body. Our stem cells continue to be active our whole lives to keep us healthy. Without them we couldn’t survive for more than three hours!”

It is, in short, really fun and really cool.

Of course we might be a tad biased here as we helped produce and develop the exhibit in collaboration with the Sherbrooke Museum of Science and Nature in Canada, the Canadian Stem Cell Network, the Centre for Commercialization of Regenerative Medicine in Canada; the Cell Therapy Catapult in the UK, and EuroStemCell.

stem cell exhibit 3

The exhibit is tri-lingual (English, Spanish and French) because our goal was to create a multi-lingual global public education program. San Diego was an obvious choice for the first stop on the California tour (with LA and the Bay Area to follow) because it is one of the leading stem cell research hubs in the U.S., and a region where CIRM has invested almost $380 million over the last ten years.

As our CIRM Board Chair, Jonathan Thomas, said:

“One of our goals at CIRM is to help spread awareness for the importance of stem cell research. San Diego is an epicenter of stem cell science and having this exhibition displayed at the Reuben H. Fleet Science Center is a wonderful opportunity to engage curious science learners of all ages.”

The Super Cells exhibit runs from January 23 to May 1, 2016, in the Main Gallery of the Reuben H. Fleet Science Center. The exhibition is included with the cost of Fleet admission.

For more information, visit the Reuben H. Fleet Science Center website.

National honor for helping “the blind see”

Those of us fortunate to have good health take so many things for granted, not the least of which is our ability to see. But, according to the World Health Organization, there are 39 million people worldwide who are blind, and another 246 million who are visually impaired. Any therapy, any device, that can help change that is truly worthy of celebration.

Dr.MarkHumayun2 copy

Dr. Mark Humayun: Photo courtesy USC

That’s why we are celebrating the news that Professor Mark Humayun has been awarded the National Medal of Technology and Innovation, the nation’s top technology honor, by President Obama.

Humayun, a researcher at USC’s Keck School of Medicine and a CIRM grantee, is being honored for his work in developing an artificial retina, one that enables people with a relatively rare kind of blindness to see again.

But we are also celebrating the potential of his work that we are funding that could help restore sight to millions of people suffering from the leading cause of blindness among the elderly. But we’ll get back to that in a minute.

First, let’s talk about the invention that has earned him this prestigious award. It’s called the Argus II and it can help people with retinitis pigmentosa, an inherited degenerative disease that slowly destroys a person’s vision. It affects around 100,000 Americans.

The Argus II uses a camera mounted on glasses that send signals to an electronic receiver that has been implanted inside the eye. The receiver then relays those signals through the optic nerve to the brain where they are interpreted as a visual image.

In a story posted on the USC website, USC President C. L. Max Nikias praised Humayun’s work:

“He dreamed the impossible: to help the blind see. With fearless imagination, bold leadership and biomedical expertise, he and his team made that dream come true with the world’s first artificial retina. USC is tremendously proud to be Professor Humayun’s academic home.”

At CIRM we are tremendously proud to be funding the clinical trial that Humayun and his team are running to find a stem cell therapy for age-related macular degeneration (AMD), the leading cause of vision loss in the world.  It’s estimated that by 2020 more than 6 million Americans will suffer from AMD.

Humayun’s team is using embryonic stem cells to produce the support cells, or RPE cells, needed to replace those lost in AMD. We recently produced this video that highlights this work, and other CIRM-funded work that targets vision loss.

In a statement released by the White House honoring all the winners, President Obama said:

“Science and technology are fundamental to solving some of our nation’s biggest challenges. The knowledge produced by these Americans today will carry our country’s legacy of innovation forward and continue to help countless others around the world. Their work is a testament to American ingenuity.”

Which is why we are honored to be partners with Humayun and his team in advancing this research and, hopefully, helping find a treatment for millions of people who dream of one day being able to see again.

 

 

 

 

Board gives stem cell institute marching orders, and a road map

The poet T. S. Eliot once wrote: “If you aren’t in over your head, how do you know how tall you are?” Well, everyone at CIRM, California’s stem cell institute, is about to find out how tall we are.

Strategic Plan coverYesterday our governing Board approved a new Strategic Plan. To call it ambitious might be considered an understatement. Among the goals it commits us to achieving are:

  • Funding 50 new clinical trials in 5 years including 10 for rare or orphan disorders and 5 in conditions affecting children
  • Fostering enactment of a new, more efficient federal regulatory approval process for stem cell treatments
  • Introducing 50 new therapeutic candidates or devices into the development pipeline
  • Reducing the time it takes to move a stem cell treatment from the earliest Discovery stage into a clinical trial by 50%
  • Increasing the number of projects moving to the next stage of development by 50%

No easy task

Each goal by itself might be considered challenging. Taken together they are likely to stretch us all. And yet that’s why we joined CIRM, why we feel fortunate to be part of this mission. We have a chance to be part of a movement that could change the face of medicine as we know it. We knew it wouldn’t be easy. But now we know what we have to do to help achieve that.

As Randy Mills, our President and CEO, said in a news release, the goal in developing this Strategic Plan was to create a clear vision for the next five years of the Institute:

”We have around $900 million left to work with and we wanted a plan that used that money to the best possible effect, maximizing our chances of pushing as many new treatments to patients as possible. We didn’t want something ‘good enough’, we wanted something ‘great’. This plan is extremely ambitious, but also realistic in the goals it sets out and the way those goals can be met.”

The Strategic Plan – you can read it in full here – doesn’t just lay out goals, it also creates a road map on how to meet those goals. They include engaging industry more, being more creative in how we move the most promising projects from one stage of research to the next, and finding ways to change the regulatory approval process to help remove obstacles and speed up the progress of these therapies into clinical trials.

Aiming high

We know we may not achieve all our goals. As Randy Mills said at our Board meeting: “This is a difficult plan. These goals are not easy to achieve.” There are always risks in pursuing something so big and ambitious but no one ever achieved anything truly worthwhile by playing it safe. We are not interested in playing it safe.

We may start out by being, as T. S. Eliot put it “in over our heads”. But we’re confident we’ll be able to grow tall enough to make this plan work.

As Randy Mills told the Board: “If we are all in this together then the probability of success is high, and if we are successful then all this would have been worthwhile.”

Meet the proteins that tell stem cells where to move and how

 

Protein word art

Word cloud art work which shows all the proteins identified by the researchers

The environment you grow up in can have a huge influence on how you turn out. That applies to people, and to stem cells too. Now a new study has identified 60 proteins that can have a big impact on how cells react to the world around them, and how they communicate with each other.

Just as it is easier for us to move across firm ground than it is to slosh our way through a soggy, muddy field, it’s easier for stem cells to move smoothly and quickly over a solid surface than over a soft, giving surface. This is particularly true for tumor cells, which move much faster on a hard surface than any other kind.

It’s not just speed that is affected by the kind of surface you place stem cells on. For example certain stem cells placed on a hard surface will specialize and turn into bone, whereas if you place those same cells on a very soft surface they will turn into nerve cells.

The problem is we didn’t know much about why that was the case, we didn’t understand the mechanism at play that caused those cells to behave that way.

Now we do.

A team at the University of Manchester in England tackled this problem by researching integrins; these are receptors that are responsible for cell-to-cell communication, cell growth and function. Integrins are typically found at the surfaces and edges of cells and provide proteins with a convenient place to hang out when they interact with the world around them.

The researchers looked at 2400 examples of these integrin-protein clusters and, using mass spectrometry, narrowed their search down to 60 proteins that they identified as being essential in linking information from the integrins to the rest of the cellular world.

The work was published in Nature Cell Biology. In an accompanying news release Dr. Jon Humphries, one of the lead researchers, talked about the significance of the work:

“Understanding how cells sense their environment is an important step in understanding how, for example, cancer cells move or how stem cells take on different jobs.”

His colleague, Professor Martin Humphries, says understanding how cells sense where they are and how to behave gives us new insights into how we can use that knowledge to better control their movement:

“Our findings on how cells sense their environment have unlocked an important key to understanding how we can persuade cells to form different tissues and how we might stop cell movement in diseases such as cancer.”

 

 

Glimpse the future at a fun-filled Festival of Science

Hands-on science and fun

Hands-on science and fun

Imagine a giant circus but instead of performing animals you have a Robot Zoo; instead of scary clowns you have colorful chemicals in glass beakers. That’s what AT&T Park will look like this Saturday when the 5th Annual Discovery Day opens its doors.  It’s a hands-on, eye-opening, brain-engaging celebration of science for everyone.

It’s a lot of fun

You’ll get a chance to learn about the science of sports – an appropriate subject as you’ll be doing it at the home of the 3-time World Champions of baseball, the San Francisco Giants. You’ll also be able to experience some of the training it takes to become an astronaut, without any of that pesky going-into-space business.

All in all you’ll be able to visit more than 150 hands-on exhibits and activities spread throughout the park, put together by the top science organizations, institutions and companies from all over the Bay Area. We’re talking Stanford University, UCSF, The Tech Museum, the Exploratorium, KQED, US Geological Society and the list goes on and on.

Meet the future right now

Today's scientists inspiring tomorrow's

Today’s scientists inspiring tomorrow’s

You’ll get to meet the scientists who are exploring outer space and the depths of the ocean, who are doing cutting edge research into health and who are pushing the boundaries of scientific knowledge.

And you will get a chance to meet us, the CIRM Team. We’re going to be there all day talking about the exciting progress being made in the field of stem cell research, and about the 15 clinical trials we are currently funding in heart disease, diabetes, cancer, HIV/AIDS and blindness (to name just a few).

You can find us on the Promenade level at booth P50. We’re easy to spot. We’re the coolest ones around. And if you have kids who enjoy PlayDoh, we will give them a chance to use the fun stuff to make stem cells.

But best of all Discovery Day is a chance for kids to learn how amazing science can be, to meet the scientists who are helping shape their future, and to consider a future as scientists themselves. And for the rest of us, it’s a chance to remind ourselves why we fell in love with science to start with.

And as if that wasn’t enough, the whole shebang is FREE.

The event is this Saturday, November 7 from 10am – 4pm. For details on where it is and how to get there – go to Discovery Day

Fun on the field at AT&T Park

Fun on the field at AT&T Park

Don Reed Reflects on the California Stem Cell Initiative

StemCellBattlesCoverYesterday was stem cell awareness day. In honor of this important event, Don Reed held a book reading at CIRM for his newly released book, STEM CELL BATTLES: Proposition 71 and Beyond: How Ordinary People Can Fight Back Against the Crushing Burden of Chronic Disease.

Don has worn many hats during his life. He’s been a power lifter, a diver at Sea World, and is one of California’s most tenacious stem cell research advocates. His stem cell journey began when his son, Roman Reed, was seriously injured in a football accident, leaving him mostly paralyzed from the neck down.

Both Don and Roman didn’t let this tragic event ruin their lives or steal their hope. In fact, both Don and his son were instrumental for getting proposition 71 to pass, leading to the birth of CIRM and new hope for patients with uncured diseases.

At yesterday’s book reading, Don chronicled the early battles to get human stem cell research off the ground in California, the progress that’s been made so far and the promise for future therapies. It was truly an inspiring event, bringing together patients, friends of Don and his wife Gloria, and CIRM scientists to celebrate the stem cell research accomplishments of the past ten years.

DonReedBook-reading2

Enjoy more pictures of the event below and a short video of Jonathan Thomas, Chair of the Governing Board of CIRM, who said a few words in praise of Don Reed’s efforts to fight for stem cell research in California.

DonReedBook-group

Don Reed and his wife Gloria share a smile with CIRM’s Pat Olson.

DonReedBook-signing

Jonathan Thomas and Don Reed.


Related links:

Happy Stem Cell Awareness Day!

SCAD_Logo_2015I woke up today extra early this morning feeling like a kid at Christmas time because it’s Stem Cell Awareness day!

This exciting day brings together organizations and people around the world working to ensure that we realize the benefits of one of the most promising fields of science in our time. The day is a unique global opportunity to foster greater understanding about stem cell research and the range of potential applications for disease and injury.

For the millions of people around the world who suffer from incurable diseases and injury, Stem Cell Awareness Day is a day to celebrate the scientific advances made to-date and be hopeful of what is yet to come.

Institutions and scientists around the world will be participating in talks and activities that celebrate and also educate the community about stem cell research. For a list of events, check out our Stem Cell Awareness Day webpage. You can also follow other events on twitter by following the hashtags #stemcellday and #astemcellscientistbecause.

In celebration of this exciting day, the Stem Cellar team would like to highlight a few videos and webpages dedicated to stem cell awareness. Enjoy!

Videos:

“A Stem Cell Story” from our friends at EuroStemCell

#AStemCellScientistBecause videos via Cell Stem Cell on twitter

 

Stem Cell Awareness Webpages:

Helping patient’s fight back against deadliest form of skin cancer

Caladrius Biosciences has been funded by CIRM to conduct a Phase 3 clinical trial to treat the most severe form of skin cancer: metastatic melanoma. Metastatic melanoma is a disease with no effective treatment, only around 15 percent of people with it survive five years, and every year it claims an estimated 10,000 lives in the U.S.

The CIRM/Caladrius Clinical Advisory Panel meets to chart future of clinical trial

The CIRM/Caladrius Clinical Advisory Panel meets to chart future of clinical trial

The Caladrius team has developed an innovative cancer treatment that is designed to target the cells responsible for tumor growth and spread. These are called cancer stem cells or tumor-initiating cells. Cancer stem cells can spread in the body because they have the ability to evade the body’s immune defense and survive standard anti-cancer treatments such as chemotherapy. The aim of the Caladrius treatment is to train the body’s immune system to recognize the cancer stem cells and attack them.

Attacking the cancer

The treatment process involves taking a sample of a patient’s own tumor and, in a laboratory, isolating specific cells responsible for tumor growth . Cells from the patient’s blood, called “peripheral blood monocytes,” are also collected. The mononucleocytes are responsible for helping the body’s immune system fight disease. The tumor and blood cells (after maturation into dendritic cells) are then combined and incubated so that the patient’s immune cells become trained to recognize the cancer cells.

After the incubation period, the patient’s immune cells are injected back into their body where they generate an immune response to the cancer cells. The treatment is like a vaccine because it trains the body’s immune system to recognize and rapidly attack the source of disease.

Recruiting the patients

Caladrius has already dosed the first patient in the trial (which is double blinded so no one knows if the patient got the therapy or a placebo) and hopes to recruit 250 patients altogether.

This is the first Phase 3 trial that CIRM has funded so we’re obviously excited about its potential to help people battling this deadly disease.  In a recent news release David J. Mazzo, the CEO of Caladrius echoed this excitement, with a sense of cautious optimism:

“The dosing of the first patient in this Phase 3 trial is an important milestone for our Company and the timing underscores our focus on this program and our commitment to impeccable trial execution. We are delighted by the enthusiasm and productivity of the team at Jefferson University (where the patient was dosed) and other trial sites around the country and look forward to translating that into optimized patient enrollment and a rapid completion of the Phase 3 trial.”

And that’s the key now. They have the science. They have the funding. Now they need the patients. That’s why we are all working together to help Caladrius recruit patients as quickly as possible. Because their work perfectly reflects our mission of accelerating the development of stem cell therapies for patients with unmet medical needs.

You can learn more about what the study involves and who is eligible by clicking here.

Using satellites to build bigger biceps

Arnold Schwarzenegger: Photo courtesy Awesome-Body.info

Arnold Schwarzenegger:
Photo courtesy Awesome-Body.info

There are several ways you can build bigger, stronger muscles. You can take the approach favored by our former Governor, Arnold Schwarzenegger, and pump iron till your biceps are as inflated as a birthday balloon. Or you could follow the lead of a research team we are funding and try to use stem cells to do the trick.

Our muscles contain a group of stem cells called satellite cells. These normally lie dormant until the muscle is damaged and then they spring into action to repair the injury. However, satellite cells are relatively rare and are hidden in the muscle itself, making them hard to find and notoriously difficult to study. In the past researchers have struggled to get these satellite cells to grow outside the body, which made it difficult to study muscle regeneration and develop new ways of treating muscle problems.

Finding a solution

Now a team at the University of California, San Francisco has found a solution to the problem. They started by analyzing samples of 7 different kinds of muscles (in the body, legs and head) from 43 patients. In all but two samples they found that the gene PAX7 was specifically turned on in satellite cells and the PAX7 protein was present with little variation from one muscle group to another.

Upon further sleuthing, they discovered that PAX7-positive satellite cells were the real deal because they also expressed two common cell surface markers of human satellite cells: CD29 and CD56.

The researchers then transplanted PAX7-positive cells into mice that had experienced muscle injuries. As they report in the journal Stem Cell Reports these cells not only engrafted in the mice but they also created hundreds of human-derived muscle fibers. This finding shows that satellite cells were regenerating and potentially helping to heal the damaged muscle.

What’s next

As always, anything done in mice is interesting but still needs to be replicated in people before we know for sure we are on to something.

In their conclusion the team freely admit this is just a first step but, compared to where we were before, it’s a very important step. As senior author Jason Pomerantz says:

“This is the first definitive experimental description of adult human endogenous muscle stem cell function.”

Harnessing the power of satellite cells would be of tremendous benefit to people suffering from facial paralysis, loss of hand function or muscle-wasting diseases such as sarcopenia, and could even be used as a way to deliver gene therapy to people with muscular dystrophies.

Using satellite cells to do all that, would be out of this world.

The Stem Cell Bank is open for business

Creating a stem cell bank

Creating a stem cell bank

When you go to a bank and withdraw money you know that the notes you get are all going to look the same and do the same job, namely allow you to buy things. But when you get stem cells for research that’s not necessarily the case. Stem cells bought from different laboratories don’t always look exactly the same or perform the same in research studies.

That’s why CIRM has teamed up with the Coriell Institute and Cellular Dynamics International (CDI) to open what will be the world’s largest publically available stem cell bank. It officially opened today. In September the Bank will have 300 cell lines available for purchase but plans to increase that to 750 by February 2016.

300 lines but no waiting

Now, even if you are not in the market for stem cells this bank could have a big impact on your life because it creates an invaluable resource for researchers looking into the causes of, and potential therapies for, 11 different diseases including autism, epilepsy and other childhood neurological disorders, blinding eye diseases, heart, lung and liver diseases, and Alzheimer’s disease.

The goal of the Bank – which is located at the Buck Institute for Research on Aging in Novato, California – is to collect blood or tissue samples from up to 3,000 volunteer donors. Some of those donors have particular disorders – such as Alzheimer’s – and some are healthy. Those samples will then be turned into high quality iPSCs or induced pluripotent stem cells.

Now, iPSC lines are particularly useful for research because they can be turned into any type of cell in the body such as a brain cell or liver cell. And, because the cells are genetically identical to the people who donated the samples scientists can use the cells to determine how, for example, a brain cell from someone with autism differs from a normal brain cell. That can enable them to study how diseases develop and progress, and also to test new drugs or treatments against defects observed in those cells to see which, if any, might offer some benefits.

Power of iPSCs

In a news release Kaz Hirao, Chairman and CEO of CDI, says these could be game changers:

“iPSCs are proving to be powerful tools for disease modeling, drug discovery and the development of cell therapies, capturing human disease and individual genetic variability in ways that are not possible with other cellular models.”

Equally important is that researchers in different parts of the world will be able to compare their findings because they are using the same cell lines. Right now many researchers use cell lines from different sources so even though they are theoretically the same type of tissue, in practice they often produce very different results.

Improving consistency

CIRM Board Chair, Jonathan Thomas, said he hopes the Bank will lead to greater consistency in results.

“We believe the Bank will be an extraordinarily important resource in helping advance the use of stem cell tools for the study of diseases and finding new ways to treat them. While many stem cell efforts in the past have provided badly needed new tools for studying rare genetic diseases, this Bank represents both rare and common diseases that afflict many Californians. Stem cell technology offers a critical new approach toward developing new treatments and cures for those diseases as well.”

Most banks are focused on enriching your monetary account. This bank hopes to enrich people’s lives, by providing the research tools needed to unlock the secrets of different diseases, and pave the way for new treatments.

For more information on how to buy a cell line go to http://catalog.coriell.org/CIRM or email CIRM@Coriell.org