CIRM at Business of Personalized Medicine Summit

Exciting new technologies such as regenerative medicine, tissue engineering and gene therapy are already at the forefront of a new era of medicine. And today, CIRM’s own Business Development Officer, Neil Littman, moderated a panel titled The Impact of Next Generation Personalized Medicine Technologies: How Disruptive Tech Continues to Advance the Industry, at the annual Business of Personalized Medicine Summit.

BPMS Logo2014

The panel discussed the innovative technologies we have at our disposal today, and provided a glimpse into the future—highlighting promising therapies already in the clinic as well as technologies that may be available in 5 to 10 years. For example, Curt Herberts, Senior Director of Corporate Development & Strategy from Sangamo BioSciences, discussed Sangamo’s grant under CIRM’s Strategic Partnership II Award, which uses genome-editing technology for a one-time treatment for the blood disorder Beta-thalassemia.

Importantly, the panel delved into potential paradigm shifts in medical care that may arise as a result of these new technologies, and discussed how to translate these cutting-edge technologies into human clinical trials. Carlos Olguin, Head of Bio/nano/Programmable Matter Group, Autodesk and Dr. Kumar Sharma, who directs the Center for Renal Translational Medicine University of California, San Diego La Jolla, rounded out the panel.

Finally, Neil asked panel members to discuss the issues surrounding market adoption and the potential resistance to paradigm-shifting technologies, the final hurdle in the delivery of much-needed therapies to patients.

Stories of Hope: Diabetes

This week on The Stem Cellar we feature some of our most inspiring patients and patient advocates as they share, in their own words, their Stories of Hope.

The last thing Maria Torres expected was to be diagnosed with type 2 diabetes. She exercised, ate well and kept her weight under control. There had to be some mistake. Maria asked her doctor to repeat the tests, but the results were the same. At 43, for reasons no one could fully explain, she had diabetes, and her life was going to change dramatically.

Maria Torres' diabetes diagnoses was frightening—but she is hopeful that stem cell therapies could one day change how doctors treat this devastating condition.

Maria Torres’ diabetes diagnoses was frightening—but she is hopeful that stem cell therapies could one day change how doctors treat this devastating condition.

“It really scared me,” says Maria. “I thought I was going to die soon.”

That Maria doubted her diagnosis is no surprise. Type 2 diabetes is often associated with obesity, and she didn’t fit the profile. Most likely, some undiscovered genetic component had made her susceptible to the disease.

Regardless, she now had to rework her life to manage the diabetes. Her cells had developed a condition called insulin resistance. Though her pancreas was producing insulin, which tells cells to take in blood sugar, the cells were not cooperating. As a result, glucose was accumulating in her blood, putting her at risk for heart disease, nerve damage, eye issues and a host of other problems.

To help her cells absorb glucose, she needs regular insulin injections. Maria injects the hormone five times a day and must often measure her blood sugar levels even more frequently.

Faithfully following this regimen has kept her alive for 20 years, but insulin is not a cure. Even with the regular injections, she faces dramatic mood swings and more serious complications as glucose levels rise and fall.

Working for a Cure
One of the most promising strategies to cure diabetes is to transplant beta cells, which sense blood sugar levels and produce insulin to reduce them. Patients with type 1 diabetes would benefit because new beta cells would replace the ones they’d lost to disease. Type 2 patients, like Maria, could increase their body’s ability to produce insulin, lowering blood sugar levels and alleviating the need for injections.

With almost $40 million in funding from CIRM, a San Diego-based company named ViaCyte is working on this solution. They have spent years developing new methods to turn human embryonic stem cells into insulin-producing beta cells. It hasn’t been easy. Stem cells are promising because they can form any tissue. However, to make a specific type of cell, researchers must replicate the exact signals that transform a stem cell into a beta cell, rather than a neuron or muscle cell.

In 2008, the company succeeded, but with a clever twist. They created progenitor cells, one step shy of mature beta cells, and allowed them to finish developing in the body. In animal studies, the hardier progenitor cells survived the transplant process and, once mature, began producing insulin. The project has another innovation up its sleeve: these progenitor cells are first placed in a porous capsule, about the size of a credit card, before transplantation under the skin. This device allows transfer of blood sugar, insulin, oxygen, and other molecules but keeps cells out, thus avoiding the possible attack and rejection by the patient’s own immune system.

ViaCyte’s goal is to start clinical trials for type 1 diabetes by the end of 2014. But the company eventually hopes to also help those with type 2. Maria Torres is eager for them to succeed, both for herself and her family.

“I have three kids, and I know they could have the same thing I have,” says Maria. “If they find a cure, for me, that’s peace of mind.”

For more information about CIRM-funded diabetes research, visit our Diabetes Fact Sheet. You can read more about Maria’s Story of Hope on our website.

CIRM-Funded Scientists Test Recipe for Building New Muscles

When muscles get damaged due to disease or injury, the body activates its reserves—muscle stem cells that head to the injury site and mature into fully functioning muscle cells. But when the reserves are all used up, things get tricky.

Scientists at Sanford-Burnham may have uncovered the key to muscle repair.

Scientists at Sanford-Burnham may have uncovered the key to muscle repair.

This is especially the case for people living with muscle diseases, such as muscular dystrophy, in which the muscle degrades at a far faster rate than average and the body’s reserve stem cell supply becomes exhausted. With no more supply from which to draw new muscle cells, the muscles degrade further, resulting in the disease’s debilitating symptoms, such as progressive difficulty walking, running or speaking.

So, scientists have long tried to find a way to replenish the dwindling supply of muscle stem cells (called ‘satellite cells’), thus slowing—or even halting—muscle decay.

And now, researchers at the Sanford-Burnham Medical Research Institute have found a way to tweak the normal cycle, and boost the production of muscle cells even when supplies appear to be diminished. These findings, reported in the latest issue of Nature Medicine, offer an alternative treatment for the millions of people suffering not only from muscular dystrophy, but also other diseases that result in muscle decay—such as some forms of cancer and age-related diseases.

In this study, Sanford-Burnham researchers found that introducing a particular protein, called a STAT3 inhibitor, into the cycle of muscle-cell regeneration could boost the production of muscle cells—even after multiple rounds of repair that would otherwise render regeneration virtually impossible.

The STAT3 inhibitor, as its name suggests, works by ‘inhibiting,’ or effectively neutralizing, another protein called STAT3. Normally, STAT3 gets switched on in response to muscle injury, setting in motion a series of steps that replenishes muscle cells.

In experiments first in animal models of muscular dystrophy—and next in human cells in a petri dish—the team decided to modify how STAT3 functions. Instead of keeping STAT3 active, as would normally occur, the team introduced the STAT3 inhibitor at specific times during the muscle regeneration process. And in so doing, noticed a significant boost in muscle cell production. As Dr. Alessandra Sacco, the study’s senior author, stated in a news release:

“We’ve discovered that by timing the inhibition of STAT3—like an ‘on/off’ light switch—we can transiently expand the satellite cell population followed by their differentiation into mature cells.”

This approach to spurring muscle regeneration, which was funded in part by a CIRM training grant, is not only innovative, but offers new hope to a disease for which treatments have offered little. As Dr. Vittorio Sartorelli, deputy scientific director of the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), stated:

“Currently, there is no cure to stop or reverse any form of muscle-wasting disorders—only medication and therapy that can slow the process. A treatment approach consisting of cyclic bursts of STAT3 inhibitors could potentially restore muscle mass and function in patients, and this would be a very significant breakthrough.”

Sacco and her colleagues are encouraged by these results, and plan to explore their findings in greater detail—hopefully moving towards clinical trials:

“Our next step is to see how long we can extend the cycling pattern, and test some of the STAT3 inhibitors currently in clinical trials for other indications such as cancer, as this could accelerate testing in humans.”

Stories of Hope: Alzheimer’s Disease

This week on The Stem Cellar we feature some of our most inspiring patients and patient advocates as they share, in their own words, their Stories of Hope.

Adele Miller knew what came next. She had lived it twice already: her father’s unraveling, due to Alzheimer’s disease, and, a few years later, her mother’s journey through the same erasure of mind and memory. So when doctors told her, at age 55, that she, too, had the disease, she remembered her parents’ difficult last years.

Lauren Miller has seen first hand how Alzheimer's can erase a lifetime's worth of memories.

Lauren Miller has seen first hand how Alzheimer’s can erase a lifetime’s worth of memories.

‘Tell no one,’ she told her family. Keep it secret.

“She was ashamed,” her daughter, actress and writer Lauren Miller, recalls. “She was so embarrassed because there’s such a stigma.” And she worried about her family. How would they handle all this? “I asked her once if she was scared,” Lauren says. “She said she wasn’t afraid for herself. But she was afraid for me, and my dad, and my brother. She knew what she’d gone through with her parents.”

Alzheimer’s disease has been a constant in the actress’s family. Perhaps that made her more attuned to the subtle changes that can herald the onset of the disease. At Lauren’s college graduation, she saw the first clues that something was amiss with her mother. She was repeating herself. Not just, “Oh, have I told you this before?” This was different. A few years later, as she and her mother prepared for a party, Lauren was stunned by the changes in her mother’s behavior. Her mother’s memory no longer seemed to function. She kept forgetting that the taco salad was vegetarian. She kept asking over and over where to throw the garbage. Lauren knew that’s not like her mother, a teacher for 35 years. So she sat down with her brother Dan and their dad. It was time to do something for Mom.

“It’s not that my dad wasn’t noticing things. But I don’t think he wanted to admit there was a problem. And he was simply too close to it,” Lauren says.

It took less than five years for Alzheimer’s disease to rob Adele Miller of nearly everything. Before she turned 60, she couldn’t write. She couldn’t speak. She didn’t even recognize her family.

The loss, the sadness, and the anger that Alzheimer’s families feel is compounded by a sense of utter helplessness against a disease that yields to no drug. But Lauren decided she would not be helpless, and in 2011, she and her husband, actor Seth Rogen, launched Hilarity for Charity, which aims to raise Alzheimer’s awareness in young people while also raising funds for the Alzheimer’s Association. This year Hilarity for Charity sponsored its first college fundraisers. It also hosts support groups for under-40 caregivers.

“Seth has the ability to reach an audience that may not know much about Alzheimer’s. His fans are 16 year old boys who aren’t generally the target for Alzheimer’s awareness,” Lauren said. “But he was able to strike a cord with a lot of these young people. We get emails from people who are 16. ‘Thank you for doing this. I felt alone. Now there’s a voice.’ This is considered an old person’s disease, but it’s really not. It affects everyone.”

In December 2013, Lauren, co-writer, producer and star of For a Good Time, Call, joined the CIRM governing Board, the Independent Citizens Oversight Committee, as a patient advocate for Alzheimer’s disease.

“Alzheimer’s research is woefully underfunded by the government, so it’s important to have bold, innovative approaches like CIRM’s to take research to the next level,” Lauren said. “Stem cell research is at the cusp of something life changing. To me, it’s one of the things closest to making a step toward treatment. I jumped at the opportunity to be part of it.”

For information about CIRM-funded Alzheimer’s disease research, visit our Alzheimer’s Fact Sheet. You can read more about Lauren’s Story of Hope on our website.

Stem Cell Stories that Caught our Eye: What’s the Best Way to Treat Deadly Cancer, Destroying Red Blood Cells’ Barricade, Profile of CIRM Scientist Denis Evseenko

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Stem Cells vs. Drugs for Treating Deadly Cancer. When dealing with a potentially deadly form of cancer, choosing the right treatment is critical. But what if that treatment also poses risks, especially for older patients? Could advances in drug development render risky treatments, such as transplants, obsolete?

That was the focus of a pair of studies published this week in the New England Journal of Medicine, where a joint Israeli-Italian research team investigated the comparative benefits of two different treatments for a form of cancer called multiple myeloma.

Multiple myeloma attacks the body’s white blood cells. While rare, it is one of the most deadly forms of cancer—more than half of those diagnosed with the disease do not survive five years after being diagnosed. The standard form of treatment is usually a stem cell transplant, but with newer and better drugs coming on the market, could they render transplants unnecessary?

In the twin studies, the research team divided multiple myeloma patients into two groups. One received a combination of stem cell transplant and chemotherapy, while the other received a combination of drugs including melphalan, prednisone and lenalidmomide. After tracking these patients over a period of four years, the research team saw a clear advantage for those patients that had received the transplant-chemotherapy treatment combination.

To read more about these twin studies check out recent coverage in NewsMaxHealth.

Breaking Blood Cells’ Barricade. The process whereby stem cells mature into red blood cells is, unfortunately, not as fast as scientists would like. In fact, there is a naturally occurring barrier that keeps the production relatively slow. In a healthy person this is not necessarily a problem, but for someone in desperate need of red blood cells—it can prove to be very dangerous.

Luckily, scientists at the University of Wisconsin-Madison have found a way to break through this barrier by switching off two key proteins. Once firmly in the ‘off’ position, the team could boost the production of red blood cells.

These findings, published in the journal Blood, are critical in the context of disease anemia, where the patient’s red blood cell count is low. They also may lead to easier methods of stocking blood banks.

Read more about this exciting discovery at HealthCanal.

CIRM Scientist on the Front Lines of Cancer. Finally, HealthCanal has an enlightening profile of Dr. Denis Evseenko, a stem cell scientist and CIRM grantee from the University of California, Los Angeles (UCLA).

Born in Russia, the profile highlights Evseenko’s passion for studying embryonic stem cells—and their potential for curing currently incurable diseases. As he explains in the article:

“I had a noble vision to develop progressive therapies for the patient. It was a very practical vision too, because I realized how limited therapeutic opportunities could be for the basic scientist, and I had seen many great potential discoveries die out before they ever reached the clinic. Could I help to create the bridge between stem cells, research and actual therapeutics?”

Upon arriving at UCLA, Evseenko knew he wanted to focus this passion into the study of degenerative diseases and diseases related to aging, such as cancer. His bold vision of bridging the gap between basic and translational research has earned him support not only from CIRM, but also the National Institutes of Health and the US Department of Defense, among others. Says Evseenko:

“It’s my hope that we can translate the research we do and discoveries we make here to the clinic to directly impact patient care.”

UCSD Team Launches CIRM-Funded Trial to Test Safety of New Leukemia Drug

Ridding weeds from your lawn can be a frustrating experience without a good weeding tool in hand. If you don’t rip out the whole weed, root and all, it’s likely to grow back in no time.

Cancer patients and their physicians experience a similar frustration but with deadly consequences. Many current cancer treatment “tools” effectively destroy most but not all of the cancer. Often, the cancer ultimately returns with a vengeance, spreading throughout the body leading to organ failure and death.

What if you could figure out a way to seek out and destroy those few cancer cells that slip through the grasp of conventional anti-cancer drugs and therapy?

Blood smear showing chronic lymphocytic leukemia (CLL). The purple-stained cells are the CLL cells.

Blood smear showing chronic lymphocytic leukemia (CLL). The purple-stained cells are the CLL cells.

Today, a team from the UCSD Moore Cancer Center in partnership with Celgene Corporation announced that they’ve launched a CIRM-funded clinical trial that will embark on answering this question for people living with chronic lymphocytic leukemia (CLL). CLL is the most common form of blood cancer in adults. In the US alone, over 15,000 people are newly diagnosed annually.

In recent years, scientists have observed that a fraction of cancer cells within the leukemia or solid tumors have stem cell-like properties that allow them to continually grow in number and metastasize—in other words, spread throughout the body. During the development of an embryo, this immortal-like property is critical for the growth of the adult organism. But in taking advantage of this trait, these so-called cancer stem cells have made it very difficult for doctors to find and pull out the entire cancer “weed”.

But the UCSD team, led by Dr. Thomas Kipps, has potentially found the leukemia stem cells’ Achilles heel: a protein called ROR1 that sits on the surface of the cells and is responsible for boosting cell growth. ROR1 is normally not found on adult cells and only exists in embryonic cells. So the team produced a protein, called an antibody, that recognizes and clings tightly to ROR1, blocking its ability to function and to promote the cancer cells’ growth. No uncontrolled cell growth, no cancer.

Kipps summarized this point in a UCSD press release:

“Because cancer stem cells may require ROR1 for their growth, survival and movement through the body, targeting ROR1 could be a way to eradicate the seeds of the cancer that are responsible for metastasis or relapse after other forms of treatment.”

This initial clinical trial is focused on making sure the ROR1 antibody is safe and well-tolerated in 33 to 78 CLL patients in whom the cancer has either returned after conventional treatment or the treatments were ineffective from the start.

If the therapy, which goes by the name cirmtuzumab, is eventually found to be effective, Dr. Kipps envisions that it could be used in concert with conventional cancer drugs to hit the cancers from several angles:

“I see cirmtuzumab as perhaps also synergizing with other forms of treatment to provide for more effective anti-cancer therapies. It’s the cocktail approach, similar to what’s been shown to be effective in treating patients with HIV. Multiple drugs attack multiple targets of the cancer, each eliminating subsets of malignant cells. When combined with anti-ROR1 therapy, we might also block the recurrence of cancer after treatment.”

This announcement follows on the heels of last week’s announcements of the start of two other CIRM-funded trials for type 1 diabetes and spinal cord injury. There’s still a long road to approved therapies but the entire CIRM community is excited by these developments which we hope will bring treatments for people living with incurable diseases.

Throwback Thursday: Scientists Create Synthetic Version of Earth’s Earliest Primordial Cells

Cells as we know them today—no matter the species—are feats of evolution; molecular machines with thousands of interlocking parts. But they didn’t start out that way.

Scientists have built a simplified cell membrane that mimics natural cellular processes and movements.

Scientists have built a simplified cell membrane that mimics natural cellular processes and movements.

Using the latest tools from the new field of synthetic biology, a team of biophysicists from Tecnische Universitaet Muenchen (TUM) in Munich, Germany, has constructed a synthetic version of an early cell, complete with some biomechanical function.

To build a primordial cell, the recipe is simple: all you need is a membrane shell, a couple of biomolecules that perform the most basic of functions, and some fuel to keep it going.

Here, TUM researchers used lipids (fat molecules) to create a double-layer cellular membrane that mimics a cell’s natural membrane. They then filled the membrane with microtubules, which acted as cellular ‘scaffolding’ to hold everything in place, and another molecule called ‘kinesin.’ These kinesin molecules serve as molecular ‘motors,’ transporting components throughout the cell by traveling along the microtubule scaffolding. Finally, they added the fuel: a compound called adenosine triphosphate, or ATP. The scientists likened this set-up to a liquid crystal layer within the membrane that is in a permanent state of motion. As lead author Felix Keber explained in a news release:

“One can picture the liquid crystal layer as tree logs drifting on the surface of a lake. When it becomes too congested, they line up in parallel but can still drift alongside each other.”

Once constructed, the research team then wanted to understand how these synthetic cells behaved, and if it would mimic natural cellular movements. And much to the team’s surprise—they did.

During a process called osmosis—where water droplets selectively pass through the membrane—the researchers noticed a change in the cells’ shape as water left the interior of the cell. The resulting membrane slack was causing the microtubules to stick out like spikes. These ‘spiked extensions’ were eerily similar to what the extensions that scientists have seen cells normally use to get around.

This observation cleared up a long-standing mystery: the way cells change shape and move around wasn’t random. The cells were simply following the basic laws of physics. This discovery then led the team to uncover the underlying mechanisms of other cellular behaviors—and even make predictions on other systems.

As the study’s lead author, Professor Andreas Bausch, stated in the same release:

“With our synthetic biomolecular model we have created a novel option for developing minimal cell models. It is ideally suited to increasing the complexity in a modular fashion in order to reconstruct cellular processes like cell migration or cell division in a controlled manner.”

In the future, the team hopes to build this knowledge to a point where they can understand the physical basis for deformed cells—with potential applications to disease modeling. Bausch added:

“That the artificially created system can be comprehensively described from a physical perspective gives us hope that in the next steps we will also be able to uncover the basic principles behind the manifold cell deformations.”

Body’s own Healing Powers Could be Harnessed to Regrow Muscle, Wake Forest Study Finds

Imagine being able to repair muscle that had been damaged in an injury, not by transplanting new muscle or even by transplanting cells, but rather simply by laying the necessary groundwork—and letting the body do the rest.

The ability for the human body to regenerate tissues lost to injury or disease may still be closer to science fiction than reality, but scientists at the Wake Forest Baptist Medical Center in Winston-Salem, North Carolina, have gotten us one big step closer.

Reporting in the latest issue of the journal Acta Biomaterialia, Dr. Sang Jin Lee and his research team describe their ingenious new method for regrowing damaged muscle tissue in laboratory rodents—by supercharging the body’s own natural restorative abilities. As Lee explained in a news release:

“Working to leverage the body’s own regenerative properties, we designed a muscle-specific scaffolding system that can actively participate in functional tissue regeneration. This is a proof-of-concept study that we hope can one day be applied to human patients.”

Normally, the body’s muscles—as well as the majority of organs—sit atop a biological ‘scaffold’ created by a matrix of molecules secreted by surrounding cells. This scaffold gives the organs and muscle their three-dimensional structure.

Scientists have identified a protein that may help spur 'in body' muscle regeneration.

Scientists have identified a protein that may help spur ‘in body’ muscle regeneration.

As of right now, if doctors want to replace damaged muscle they have one of two options: either surgically transfer a muscle segment from one part of the body to the other, or engineer replacement muscle tissue in the lab from a biopsy. Both methods, while doable, are not ideal. In the first, you are reducing the strength of the donor muscle; in the second, you have the added challenge of standardizing the engineered cells so that they will graft successfully.

So, Lee and his team focused on a third way: coaxing the body’s own supply of adult stem cells—which are tissue specific and normally used for general small-scale maintenance—to rebuild the damaged muscle from within. Said Lee:

“Our aim was to bypass the challenges of both of these techniques and to demonstrate the mobilization of muscle cells to a target-specific site for muscle regeneration.”

In this study, the researchers developed a method to do just that in the laboratory animals. First, they implanted a new cellular scaffold into the rodents’ legs. After several weeks, they removed the scaffold to see whether any cells had latched on of their own accord.

Interestingly, the team found that without any additional manipulation, the scaffold had developed a network of blood vessels within just four weeks after implanting. They also observed the presence of some early-stage muscle cells. What the researchers wanted to do next was find a way to boost what they already observed naturally.

To do so, they tested whether proteins—previously known to be involved in muscle development—could boost the speed and amount of recruitment of muscle stem cells to the scaffold.

After a series of experiments, they found a leading candidate: a protein called insulin-like growth factor 1, or IGF-1. And when they injected IGF-1 into the newly-implanted scaffolds the difference was remarkable. These scaffolds had about four times as many cells when compared to the plain scaffolds. As Lee explained:

“The protein effectively promoted cell recruitment and accelerated muscle regeneration.”

The real work now begins, added Lee, whose team will now take their research to larger animal models, such as pigs, to see whether their technique can work on a far grander scale.

Stem Cell Stories that Caught our Eye: A Zebrafish’s Stripes, Stem Cell Sound Waves and the Dangers of Stem Cell Tourism

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

The zebrafish (Danio rerio) owes its name to a repeating pattern of blue stripes alternating with golden stripes. [Credit: MPI f. Developmental Biology/ P. Malhawar]

The zebrafish (Danio rerio) owes its name to a repeating pattern of blue stripes alternating with golden stripes. [Credit: MPI f. Developmental Biology/ P. Malhawar]

How the Zebrafish Got its Stripes. Scientists in Germany have identified the different pigment cells that emerge during embryonic development and that determine the signature-striped pattern on the skins of zebrafish—one of science’s most commonly studied model organisms. These results, published this week in the journal Science, will help researchers understand how patterns, from stripes to spots to everything in between, develop.

In the study, scientists at the Max Planck Institute for Developmental Biology mapped how three distinct pigment cells, called black cells, reflective silvery cells, and yellow cells emerge during development and arrange themselves into the characteristic stripes. While researchers knew these three cell types were involved in stripe formation, what they discovered here was that these cells form when the zebrafish is a mere embryo.

“We were surprised to observe such cell behaviors, as these were totally unexpected from what we knew about color pattern formation”, says Prateek Mahalwar, first author of the study, in a news release.

What most surprised the research team, according to the news release, was that the three cell types each travel across the embryo to form the skin from a different direction. According to Dr. Christiane Nüsslein-Volhard, the study’s senior author:

“These findings inform our way of thinking about color pattern formation in other fish, but also in animals which are not accessible to direct observation during development such as peacocks, tigers and zebras.”

Sound Waves Dispense Individual Stem Cells. It happens all the time in the lab: scientists need to isolate and study a single stem cell. The trick is, how best to do it. Many methods have been developed to achieve this goal, but now scientists at the Regenerative Medicine Institute (REMEDI) at NUI Galway and Irish start-up Poly-Pico Technologies Ltd. have pioneered the idea of using sound waves to isolate living stem cells, in this case from bone marrow, with what they call the Poly-Pico micro-drop dispensing device.

Poly-Pico Technologies Ltd., a start-up that was spun out from the University of Limerick in Ireland, has developed a device that uses sound energy to accurately dispense protein, antibodies and DNA at very low volumes. In this study, REMEDI scientists harnessed this same technology to dispense stem cells.

These results, while preliminary, could help improve our understanding of stem cell biology, as well as a number of additional applications. As Poly-Pico CEO Alan Crean commented in a news release:

“We are delighted to see this new technology opportunity emerge at the interface between biology and engineering. There are other exciting applications of Poly-Pico’s unique technology in, for example, drug screening and DNA amplification. Our objective here is to make our technology available to companies, and researchers, and add value to what they are doing. This is one example of such a success.”

The Dangers of Stem Cell Toursim. Finally, a story from ABC News Australia, in which they recount a woman’s terrifying encounter with an unproven stem cell technique.

In this story, Annie Levington, who has suffered from multiple scleoris (MS) since 2007, tells of her journey from Melbourne to Germany. She describes a frightening experience in which she paid $15,000 to have a stem cell transplant. But when she returned home to Australia, she saw no improvement in her MS—a neuroinflammatory disease that causes nerve cells to whither.

“They said I would feel the effects within the next three weeks to a year. And nothing – I had noticed nothing whatsoever. [My neurologist] sent me to a hematologist who checked my bloods and concluded there was no evidence whatsoever that I received a stem cell transplant.”

Sadly, Levington’s story is not unusual, though it is not as dreadful as other instances, in which patients have traveled thousands of miles to have treatments that not only don’t cure they condition—they actually cause deadly harm.

The reason that these unproven techniques are even being administered is based on a medical loophole that allows doctors to treat patients, both in Australia and overseas, with their own stem cells—even if that treatment is unsafe or unproven.

And while there have been some extreme cases of death or severe injury because of these treatments, experts warn that the most likely outcome of these untested treatments is similar to Levington’s—your health won’t improve, but your bank account will have dwindled.

Want to learn more about the dangers of stem cell tourism? Check out our Stem Cell Tourism Fact Sheet.

A Tumor’s Trojan Horse: CIRM Researchers Build Nanoparticles to Infiltrate Hard-to-Reach Tumors

Some tumors are hard to find, while others are hard to destroy. Fortunately, a new research study from the University of California, Davis, has developed a new type of nanoparticle that could one day do both.

UC Davis scientists have developed a new type of nanoparticle to target tumor cells.

UC Davis scientists have developed a new type of nanoparticle to target tumor cells.

Reporting in the latest issue of Nature Communications, researchers in the laboratory of UC Davis’ Dr. Kit Lam describe a type of ‘dynamic nanoparticle’ that they created, which not only lights up tumors during an MRI or PET scan, but which may also serve as a microscopic transport vehicle, carrying chemotherapy drugs through the blood stream—and releasing them upon reaching the tumor.

This is not the first time scientists have attempted to develop nanoparticles for medicinal purposes, but is perhaps one of the more successful. As Yuanpei Li, one of the study’s co-first authors stated in a news release:

“These are amazingly useful particles. As a contrast agent, they make tumors easier to see on MRI and other scans. We can also use them as vehicles to deliver chemotherapy directly to tumors.”

Nanoparticles can be constructed out of virtually any material—but the material used often determines for what purpose they can be used. Nanoparticles made of gold-based materials, for example, may be strong for diagnostic purposes, but have been shown to have issues with safety and toxicity. On the flip side, nanoparticles made from biological materials are safer, but inherently lack imaging ability. What would be great, the team reasoned, was a new type of nanoparticle that had the best qualities of both.

In this study, which was funded in part by CIRM, Lam and the UC Davis team devised a new type of nanoparticle that was ‘just right,’—simple to make, safe and able to perform the desired task, in this case: attack tumors.

Built of organic porphyrin and cholic acid polymers and coated with the amino acid cysteine, the 32 nanometer-wide particles developed in this study offer a number of advantages over other models. They are small enough to pass into tumors, can be filled with a chemo agent and with a specially designed cysteine coating, and don’t accidentally release their payload before reaching their destination.

And this is where the truly ingenious part kicks in. With a simple flash of light, the researchers could direct the particles to drop their payload—at just the right time, offering some intriguing possibilities for new ways to deliver chemotherapy drugs.

But wait, there’s more. The fact that these new particles, which the team are calling cysteine nanoparticles, or CNP’s, appear to congregate inside tumors means that they also end up being easy to spot on an MRI.

Continued Li in the same release:

“These particles can combine imaging and therapeutics. We could potentially use them to simultaneously deliver treatment and monitor treatment efficacy. This is the fist nanoparticle to perform so many different jobs. From delivering chemo, photodynamic and photothermal therapies to enhancing diagnostic imaging. It’s the complete package.”

And while the team cautions that these results are preliminary, they open the door to an entirely new and far more exact method of drug delivery to tumors—no matter how well-hidden in the body they may be.