Stem cell stories that caught our eye: fixing defects we got from mom, lung repair and staunching chronic nerve pain

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Two ways to clean up mitochondrial defects. Every student gets it drilled into them that we get half our genes from mom and half from dad, but that is not quite right. Mom’s egg contains a few genes outside the nucleus in the so-called powerhouse of the cell, the mitochondria that we inherit only from mom. The 13 little genes in that tiny organelle that are responsible for energy use can wreak havoc when they are mutated. Now, a multi-center team working in Oregon and California has developed two different ways to create stem cells that match the DNA of specific patients in everyway except those defective mitochondrial genes.

The various mitochondrial mutations tend to impact one body system more than others. The end goal for the current research is to turn those stem cells into healthy tissue that can be transplanted into the area most impacted by the disease in a specific patient. That remains some years away, but this is a huge step in providing therapies for this group of diseases.

Currently, we have two ways of making stem cells that match the DNA of a patient, which hopefully result in transplantable cells that can avoid immune rejection. One is to reprogram adult tissue into induced pluripotent (iPS type) stem cells and the other uses the techniques called Somatic Cell Nuclear Transfer (SCNT), often called therapeutic cloning. The current research did both.

The team converted the SCNT stem cells into various needed tissues such as these nerve precursor cells.

The team converted the SCNT stem cells into various needed tissues such as these nerve precursor cells.

The iPS work relied on the fact that our tissues are mosaics because of the way mitochondria get passed on when cells divide. So not all cells show mitochondrial mutations in people with “mito disease” —how impacted families tend to refer to it, as I found out through a distant cousin with a child valiantly struggling with one form of the disease. Because each iPS stem cell line arises from one cell, the researchers could do DNA analysis on each cell line and sort for ones with few or no mutations, resulting in healthy stem cells, which could become healthy transplant tissue.

But for some patients, there are just too many mutations. For those the researchers inserted the DNA from the patient into a healthy donor egg containing healthy mitochondria using SCNT. The result: again healthy stem cells.

“To families with a loved one born with a mitochondrial disease waiting for a cure, today we can say that a cure is on the horizon,” explained co-senior author Shoukhrat Mitalipov at the Oregon Stem Cell Center in a story in Genetic Engineering News. “This critical first step toward treating these diseases using gene therapy will put us on the path to curing them and unlike unmatched tissue or organ donations, combined gene and cell therapy will allow us to create the patients’ own healthy tissue that will not be rejected by their bodies.”

ScienceDaily ran the Oregon press release, HealthCanal ran the press release from the Salk Institute in La Jolla home of the other co-senior author Juan Carlos Izpisua Belmonte, whose lab CIRM funds for other projects. And Reuters predictably did a piece with a bit more focus on the controversy around cloning. Nature published the research paper on Wednesday.

Stem cells to heal damaged lungs. Lung doctors dealing with emphysema, cystic fibrosis and other lung damage may soon take a page from the playbook of cancer doctors who transplant bone marrow stem cells. A team at Israel’s Weizmann Institute has tested a similar procedure in mice with damaged lungs and saw improved lung function

Transplanted lung cells continued to grow at six weeks (left) and 16 weeks (right).

Transplanted lung cells continued to grow at six weeks (left) and 16 weeks (right).

Stem cells are homebodies. They tend to hang out in their own special compartments we call the stem cell niche, and if infused elsewhere in the body will return home to the niche. Bone marrow transplants make use of that tendency in two ways. Doctors wipe out the stem cells in the niche so that there is room there when stem cells previously harvested from the patient or donor cells are infused after therapy.

The Weizmann team did this in the lungs by developing a method to clear out the lung stem cell niche and isolating a source of stem cells capable of generating new lung tissue that could be infused. They now need to perfect both parts of the procedure. ScienceDaily ran the institute’s press release.

Stem cells for chronic pain due to nerve damage. Neuropathy, damaged nerves caused by diabetes, chemotherapy or injury tends to cause pain that resists treatment. A team at Duke University in North Carolina has shown that while a routine pain pill might provide relief for a few hours, a single injection of stem cells provided relief for four to five weeks—in mice.

They used a type of stem cell found in bone marrow known to have anti-inflammatory properties called Bone Marrow Stromal Cells (BMSCs). They infused the cells directly into the spinal cavity in mice that had induced nerve damage. They found that one chemical released by the stem cells, TGF Beta1, was present in the spinal fluid of the treated animals at higher than normal levels. This finding becomes a target for further research to engineer the BMSCs so that they might be even better at relieving pain. ScienceNewsline picked up the Duke press release about the research published in the Journal of Clinical Investigation.

Pushing, pulling and dragging stem cell research forward

Government agencies are known for many things, but generally speaking a willingness to do some voluntary, deep self-examination is not one of them. However, for the last few weeks CIRM has been doing a lot of introspection as we develop a new Strategic Plan, a kind of road map for where we are heading.

Patient Advocate meeting in Los Angeles: Photo courtesy Cristy Lytal USC

Patient Advocate meeting in Los Angeles:
Photo courtesy Cristy Lytal USC

But we haven’t been alone. We’ve gone to San Diego, Los Angeles and San Francisco to talk to Patient Advocates in each city, to get their thoughts on what we need to focus on for the future. Why Patient Advocates? Because they are the ones with most skin in the game. They are why we do this work so it’s important they have a say in how we do it.

As Chris Stiehl, a Patient Advocate for type 1 diabetes, said in San Diego: “Let the patient be in the room, let them be part of the conversation about these therapies. They are the ones in need, so let them help make decisions about them right from the start, not at the end.”

A Strategic Plan is, on the surface, a pretty straightforward thing to put together. You look at where you are, identify where you want to go, and figure out the best way to get from here to there. But as with many things, what seems simple on the surface often turns out to be a lot more complicated when looked at in more depth.

The second bit, figuring out where you want to go, is easy. We want to live up to our mission of accelerating the development of stem cells therapies to patients with unmet medical needs. We don’t want to be good at this. We want to be great at this.

Dr. C. Randal Mills talking to Patient Advocates in LA: Photo courtesy Cristy Lytal, USC

Dr. C. Randal Mills talking to Patient Advocates in LA: Photo courtesy Cristy Lytal, USC

The first part, seeing where you are, is a little tougher: it involves what our President and CEO, Dr. Randy Mills, “confronting some brutal facts”, being really honest in assessing where you are because without that honesty you can’t achieve anything.

So where are we as an agency? Well, we have close to one billion dollars left in the bank, we have 12 projects in clinical trials and more on the way, we have helped advance stem cells from a fledgling field to a science on the brink of what we hope will be some remarkable treatments, and we have a remarkable team ready to help drive the field still further.

But how do we do that, how do we identify the third part of the puzzle, getting from where we are to where we want to be? CIRM 2.0 is part of the answer – developing a process to fund research that is easier, faster and more responsive to the needs of the scientists and companies developing new therapies. But that’s just part of the answer.

Some of the Patient Advocates asked if we considered focusing on just a few diseases, such as the ten largest killers of Americans, and devoting our remaining resources to fixing them. And the answer is yes, we looked at every single option. But we quickly decided against that because, as Randy Mills said:

“This is not a popularity contest, you can’t judge need by numbers, deciding the worth of something by how many people have it. We are disease agnostic. What we do is find the best science, and fund it.”

Another necessary element is developing better ways to attract greater investment from big pharmaceutical companies and venture capital to really help move the most promising projects through clinical trials and into patients. That is starting to happen, not as fast as we would like, but as our blog yesterday shows things are moving in this direction.

And the third piece of the pie is getting these treatments through the regulatory process, getting the Food and Drug Administration (FDA) to approve therapies for clinical trials. And this last piece clearly hit a nerve.

Many Patient Advocates expressed frustration at the slow pace of approval for any therapy by the FDA, some saying it felt like they just kept piling up obstacles in the way.

Dr. Mills said the FDA is caught between a rock and a hard place; criticized if it approves too slowly and chastised if it approves too fast, green lighting a therapy that later proves to have problems. But he agreed that changes are needed:

“The regulatory framework works well for things like drugs and small molecules that can be taken in pills but it doesn’t work well for cellular therapies like stem cells. It needs to do better at that.”

One Advocate suggested a Boot Camp for researchers, drilling them in the skills they’ll need to get FDA approval. Others suggested applying political pressure from Patient Advocacy groups to push for change.

As always there are no easy answers, but the meeting certainly raised many great questions. Those are all helping us focus our thinking on what needs to be in the Strategic Plan.

Randy ended the Patient Advocate events by saying the stem cell agency “is in the time business. What we do is time sensitive.” For too many people that time is already running out. We have to do everything we can to change that.

Moving Beyond Current CIRM Funding

Delivering on CIRM’s mission of “accelerating stem cell treatments to patients with unmet medical needs” requires the participation of multiple stakeholders to span the research, development, and commercialization phases of bringing a new product to market. In this post, I am pleased to highlight two recent examples of CIRM-funded projects moving beyond their period of CIRM funding by establishing partnerships with industry and investors to further develop the underlying CIRM-funded technology.

In 2000, Dr. Jill Helms, an academic investigator at Stanford University, received a $6.5 million grant from CIRM under an Early Translational award. The title of Dr. Helms’ project was Enhancing Healing via Wnt-Protein Mediated Activation of Endogenous Stem Cells,” and the goal of the award was to develop a novel, protein-based therapeutic platform to accelerate and enhance tissue regeneration through activation of adult stem cells. The five-year award achieved many critical milestones along the way, including the initiation of two preclinical studies aimed at demonstrating the effectiveness of a protein called L-WNT3A to improve the success of spinal fusion surgery and to treat a degradative bone disease called osteonecrosis, both of which represent unmet medical needs.

Helms_bonegraft

Through CIRM funding, Dr. Jill Helms’ team was able to demonstrate that treatment with a protein called L-Wnt3a regenerates and promotes bone formation in animals models (Figs D,F: untreated; Figs E,G: Wnt3a treated). (image credit: Leucht et al. J Bone Joint Surg Am. 2013;95:1278-88)

Dr. Helms’ work attracted considerable interest from the investor community during the lifespan of her grant, and during the final year of her award Dr. Helms’ WNT3A technology platform was successfully spun out of Stanford into a newly created company called Ankasa Regenerative Therapeutics. Ankasa was established with the financial support of Avalon Ventures – a La Jolla based life sciences venture capital firm, Correlation Ventures – an analytics driven venture capital firm, and Heraeus Medical – a diversified global medical device company based in Germany with over $1 billion of annual revenue. Ankasa has raised an initial $8.5 million in the first round of the total $17 million Series A financing to continue the development of the previously CIRM-funded technology.

Moving Radially Branched Deployment_Neurosurgery_Lim

Dr. Daniel Lim’s CIRM-funded BranchPoint Device allows neurosurgeons to deliver cell based therapies to multiple areas of the brain with just one needle penetration.  (image credit: Silvestrini et al. Stereotact Funct Neurosurg 2013;91:92–103)

The second recent example comes from a CIRM Tools & Technology grant to Dr. Daniel Lim, a neurosurgeon at UCSF. Dr. Lim was awarded a $1.8 million grant to develop a more efficient device for transplanting stem cells into the brain, titled Development and Preclinical Testing of New Devices for Cell Transplantation to the Brain.” Dr. Lim successfully developed a platform technology that enables Radially Branched Deployment (RBD) of cells to multiple target locations at variable radial distances and depths along the initial brain penetration tract with real-time interventional magnetic resonance image (iMRI) guidance. This technology is a huge leap forward over the conventional and crude syringe and needle device that are typically used to inject living cells into the brain.

Dr. Lim’s work attracted the attention of Accurexa, a publicly traded medical device company that licensed the CIRM-funded technology from UCSF. Under the guidance of Accurexa, a 510(k) application was submitted to the FDA for the newly coined “BranchPoint Device.” In June of this year, Accurexa successfully raised $2.5 million in equity financing to continue the development and for commercialization of the BranchPoint Device.

Overall, there remains a lack of industry pull for early stage stem cell technologies, however, both Drs. Helms and Lim’s stories represent successful examples of CIRM providing public dollars for early stage research with the resulting potentially life-saving applications attracting interest from investors and companies. These new investors will further fund and develop the technologies well beyond current CIRM funding and, assuming they are successful, deliver them to patients with unmet medical needs.

Giving stem cells the right physical cues produced micro hearts, maybe a tool to avoid birth defects

Heart defects, one of the leading types of birth defects, often result from drugs mom is taking, but we have not had a good model of developing fetal hearts to test drugs for these side effects. Now, a team at the University of California, Berkeley and the Gladstone Institutes has created micro heart chambers in a lab dish by providing the starting stem cells with the right physical cues. And they found these mini-hearts can predict birth defects.

Different types of cells required to make functioning heart tissue show up as different colors here.

Different types of cells required to make functioning heart tissue show up as different colors here.

As we have written before, it takes a neighborhood to raise a stem cell into a wanted adult cell. While most lab cultures maturing stem cells into adult tissue are flat, the developing fetal heart grows in an environment with many physical cues, both chemical and pressure. The Berkeley team added a chemical layer to the cell culture dish and etched it to provide added physical cues. The result produced both connective tissue and heart muscle that were organized into micro heart chambers that could beat.

“We believe it is the first example illustrating the process of a developing human heart chamber in vitro,” said Kevin Healy, co-senior author of the study at UC Berkeley. “This technology could help us quickly screen for drugs likely to generate cardiac birth defects, and guide decisions about which drugs are dangerous during pregnancy.”

The team took the added step of testing a drug known to cause birth defects, thalidomide. When the stem cells were growing with the drug added to the culture, they did not develop into the same micro chambers.

The Berkeley bioengineers started with stem cells reprogrammed from adult skin tissue in the CIRM-funded lab of Bruce Conklin at the Gladstone, the other co-senior author on the paper. These iPS-type stem cells were essential to the project.

“The fact that we used patient-derived human pluripotent stem cells in our work represents a sea change in the field,” said Healy. “Previous studies of cardiac micro-tissues primarily used harvested rat cardiomyocytes, which is an imperfect model for human disease.”

 

Berkeley issued a press release on the work and Popular Science wrote a piece on it complete with a fun embedded video of the beating tissue. The journal Nature Communication ran the original research publication today.

Two studies show genes and their switches critical to brain cancer’s resistance to therapy

Two California teams discovered genetic machinery that cancer stem cells in high-grade brain cancers use to evade therapy. One CIRM-funded team at Cedars-Sinai in Los Angeles pinpointed a family of genes that turn off other genes that chemotherapy targets —effectively hiding them from the chemo. The other team at the University of California, San Diego (UCSD), found a culprit switch among the molecules that surround genes in the DNA.

Chemical switches like those found at UCSD control much of how our cells function. These so called epigenetic markers can toggle between on and off states and result in two cells with the same genes behaving differently. That is what the San Diego team found when they transplanted cells from the same glioblastoma brain cancer into different mice. Some readily formed new tumors and some did not.

“One of the most striking findings in our study is that there are dynamic and reversible transitions between tumorigenic and non-tumorigenic states in glioblastoma that are determined by epigenetic regulation,” said senior author Clark Chen. “This plasticity represents a mechanism by which glioblastoma develops resistance to therapy.”

The switch the cancer stem cells used in this case is called LSD1 and the researchers hope to be able to learn how to manipulate that switch to make the brain cancer stem cells more vulnerable to therapy.

Brain caner cells (left) that don’t readily form new tumors can spontaneously acquire cancer stem cell characteristics (right).

Brain caner cells (left) that don’t readily form new tumors can spontaneously acquire cancer stem cell characteristics (right).

The family of genes fingered by the Cedars team control the on-off status of a number of genes associated with cancer stem cells. That family, called Ets factors, is quite large but the brain tumor model used by the team allows them to quickly determine which genes are being impacted by the Ets factors.

“The ability to rapidly model unique combinations of driver mutations from a patient’s tumor enhances our quest to create patient-specific animal models of human brain tumors,” said Moise Danielpour the senior author on the study

The team’s next step: testing the function of the various Ets factors to see what their specific roles are in tumor progression.

Given the dismal five-year survival rate for high-grade brain cancers these advances in understanding their genetic machinery should push the field toward better therapy.

The Cedars team published in the journal Cell Reports and Health Canal picked up the hospital’s press release. The UCSD team published in the Proceedings of the National Academy of Sciences and Science Daily picked up the university’s press release. CIRM funds a number of projects working on new therapies for brain cancer.

Stem cell stories that caught our eye: correcting cystic fibrosis gene, improving IVF outcome, growing bone and Dolly

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Cystic Fibrosis gene corrected in stem cells. A team at the University of Texas Medical School at Houston corrected the defective gene that causes cystic fibrosis in stem cells made from the skin of cystic fibrosis patients. In the long term the advance could make it possible to grow new lungs for patients with genes that match their own—with one life-saving exception—and therefore avoid immune rejection. But, the short-term outcome will be a model for the disease that provides tools for evaluating potential new drug therapies.

“We’ve created stem cells corrected for the cystic fibrosis mutation that potentially could be utilized therapeutically for patients,” said Brian Davis the study’s senior author in a university press release. “While much work remains, it is possible that these cells could one day be used as a form of cell therapy.”

The researchers made the genetic correction in the stem cells using the molecular scissors known as zing finger nucleases. Essentially they cut out the bad gene and pasted in the correct version.

Stem cell researchers boost IVF. Given all the ethical issues raised in the early years of embryonic stem cell research it is nice to be able to report on work in the field that can boost the chances of creating a new life through in vitro fertilization (IVF). Building on earlier work at Stanford a CIRM-funded team there has developed a way to detect chromosome abnormalities in the embryo within 30 hours of fertilization.

Chromosomal abnormalities account for a high percent of the 60 to 70 percent of implanted embryos that end up in miscarriage. But traditional methods can’t detect those chromosomal errors until day five or six and clinicians have found that embryos implant best three to four days post fertilization. This new technique should allow doctors to implant only the embryos most likely to survive.

“A failed IVF attempt takes an emotional toll on a woman who is anticipating a pregnancy as well as a financial toll on families, with a single IVF treatment costing thousands and thousands of dollars per cycle. Our findings also bring hope to couples who are struggling to start a family and wish to avoid the selection and transfer of embryos with unknown or poor potential for implantation,” explained Shawn Chavez who led the team and has since moved to Oregon Health Sciences University.

The study, which used recent advanced technology in non-invasive imaging, was described in a press release from Oregon.

Fun TED-Ed video shows how to grow bone. Medical Daily published a story this week about a team that had released a TED-Ed video earlier this month on how to grow a replacement bone on the lab. The embedded video provides a great primer on how we normally grow and repair bone in our bodies and how that knowledge can inform efforts to grow bone in the lab.

In particular, the story walks through a scenario of a patient with a bone defect too large for our normal repair mechanisms to patch up. It describes how scientist can take stem cells from fat, use 3D printers to mold a scaffold the exact shape of the defect, and culture the stem cells on the scaffold in the lab to create the needed bone.

The video and story reflect the work of New York-based company EpiBone and its tissue engineer CEO Nina Tandon.

Happy birthday Dolly (the sheep). July 5 marked the 19th anniversary of the first cloned mammal, Dolly the sheep in Scotland. For fans of the history of science, MotherBoard gives a good brief history of the resulting kerfuffle and a reminder that Dolly was not very healthy and the procedure was not and is not ready to produce cloned human.

Dolly's taxidermied remains are in a museum in Scotland. She died after only six years, about half the normal life expectancy.

Dolly’s taxidermied remains are in a museum in Scotland. She died after only six years, about half the normal life expectancy.

New Video: Paving a path to cures with the Alpha Stem Cell Clinics Network

In The Stem Cellar, you often read phrases like, “as their research progresses toward the clinic.” That’s because it’s a very noteworthy milestone to advance an initial idea in the laboratory to an actual experimental therapy that has approval to be tested in people. It’s a process that can be years in making. Through our support, several research teams in California have successfully delivered innovative stem cell-based therapies to clinical trials.

Now comes the hard part.

The scene shifts from a laboratory bench to hospital beds and clinic rooms with real life patients and a bustling medical staff. Considering many stem cell therapies are first-in-human studies and have no precedent, how do you get these clinical trials up and running?

CIRM_Logo_AlphaClinic_300px

Enter CIRM’s Alpha Stem Cell Clinics Network, a $24 million initiative to provide the infrastructure necessary to get stem cell clinical trials off the ground in the most efficient manner possible. For example, efforts will include (but not limited to) teaching doctors and nurses new skills for administering stem cell therapies, helping to determine how the treatments will be paid for, sharing data between trial sites to improve outcomes, and educating patients about their treatment. We believe this investment will go a long way towards fulfilling the agency’s mission to accelerate the development of stem cell therapies to patients with unmet medical needs.

In late May, the three Network programs from UCSD, City of Hope, and the UCLA/UCI consortium joined CIRM at the City of Hope campus for a kickoff workshop to mark the beginning of the endeavor. We brought our cameras along and produced this short video about the Alpha Stem Cell Clinics Network, which features interviews with each trial center’s program director:

Partnering with Big Pharma to benefit patients

Our mission at CIRM is to accelerate the development of stem cell therapies for patients with unmet medical needs. One way we have been doing that is funding promising research to help it get through what’s called the “Valley of Death.” This is the time between a product or project showing promise and the time it shows that it actually works.

Many times the big pharmaceutical companies or deep pocketed investors, whose support is needed to cover the cost of clinical trials, don’t want to get involved until they see solid proof that this approach works. However, without that support the researchers can’t do the early stage clinical trials to get that proof.

The stem cell agency has been helping get these projects through this Catch 22 of medical research, giving them the support they need to get through the Valley of Death and emerge on the other side where Big Pharma is waiting, ready to take them from there.

We saw more evidence that Big Pharma is increasingly happy doing that this week with the news that the University of California, San Diego, is teaming up with GSK to develop a new approach to treating blood cancers.

Dr. Catriona Jamieson: Photo courtesy Moores Cancer Center, UCSD

Dr. Catriona Jamieson:
Photo courtesy Moores Cancer Center, UCSD

Dr. Catriona Jamieson is leading the UCSD team through her research that aims at killing the cancer stem cells that help tumors survive chemotherapy and other therapies, and then spread throughout the body again. This is work that we have helped fund.

In a story in The San Diego Union Tribune, reporter Brad Fikes says this is a big step forward:

“London-based GSK’s involvement marks a maturation of this aspect of Jamieson’s research from basic science to the early stages of discovering a drug candidate. Accelerating such research is a core purpose of CIRM, founded in 2004 to advance stem cell technology into disease therapies and diagnostics.”

The stem cell agency’s President and CEO, Dr. C. Randal Mills, is also quoted in the piece saying:

“This is great news for Dr. Jamieson and UCSD, but most importantly it is great news for patients. Academic-industry partnerships such as this bring to bear the considerable resources necessary to meaningfully confront healthcare’s biggest challenges. We have been strong supporters of Dr. Jamieson’s work for many years and I think this partnership not only reflects the progress that she has made, but just as importantly it reflects how the field as a whole has progressed.”

As the piece points out, academic researchers are very good at the science but are not always as good at turning the results of the research into a marketable product. That’s where having an industry partner helps. The companies have the experience turning promising therapies into approved treatments.

As Scott Lippman, director of the Moores Cancer Center at UCSD, said of the partnership:

“This is a wonderful example of academia-industry collaboration to accelerate drug development and clinical impact… and opens the door for cancer stem cell targeting from a completely new angle.”

With the cost of carrying out medical research and clinical trials rising it’s hard for scientists with limited funding to go it alone. That’s why these partnerships, with CIRM and industry, are so important. Working together we make it possible to speed up the development and testing of therapies, and get them to patients as quickly as possible.

Parkinson’s blog explains the science behind turning skin cells into a model for the disease

When my colleagues and I write about new advances in stem cell science we often rely on what I refer to as the Sydney Harris method of explaining the science. One of the cartoonist’s most reproduced drawings shows a researcher writing a series of steps on a chalk board with one in the middle being “then a miracle happens.”

Alex was diagnosed with Parkinson's at age 36. His skin cells became a model for the disease.

Alex was diagnosed with Parkinson’s at age 36. His skin cells became a model for the disease.

Our goal usually centers on helping our readers understand an advance and how it moves the field forward, not describing how the scientist actually knows what he or she is reporting. For anyone who wants to get inside the science, particularly about reprogramming skin cells to be stem cells, which we write about often, I suggest a visit to “Alex’s Skin Cell Blog.” A patient with young-onset Parkinson’s disease, it chronicles turning Alex’s skin cells into a model for the disease.

The research takes place at the Parkinson’s Institute in Sunnyvale and the blog features a conversation between Alex and researchers there. Most of the columns feature a CIRM-funded graduate student Lauren Pijanowski, and more recently, Birgitt Schuele.

They explain in pretty understandable pros and illustrations how scientists know things like: were they successful in getting the skin cells to become stem cells; how they make sure the reprogramming process does not damage the cells; and how they keep Alex’s cells alive in a tissue bank. In the most recent, Birgitt explains the use of fluorescent markers to identify cells that have become true stem cells.

This resource could be extremely valuable to teachers, but can also be fun for the simply science curious. For a wealth of more basics on stem cells for teachers, students or the science curious, also check out our high school curriculum.

Share your voice, shape our future

shutterstock_201440705There is power in a single voice. I am always reminded of that whenever I meet a patient advocate and hear them talk about the need for treatments and cures – and not just for their particular disease but for everyone.

The passion and commitment they display in advocating for more research funding reflects the fact that everyday, they live with the consequences of the lack of effective therapies. So as we at CIRM, think about the stem cell agency’s future and are putting together a new Strategic Plan to help shape the direction we take, it only makes sense for us to turn to the patient advocate community for their thoughts and ideas on what that future should look like.

That’s why we are setting up three meetings in the next ten days in San Diego, Los Angeles and San Francisco to give our patient advocates a chance to let us know what they think, in person.

We have already sent our key stakeholders a survey to get their thoughts on the general direction for the Strategic Plan, but there is a big difference between ticking a box and having a conversation. These upcoming meetings are a chance to talk together, to explore ideas and really flesh out the details of what this Strategic Plan could be and should be.

Our President and CEO, Dr. C. Randal Mills wants each of those meetings to be an opportunity to hear, first hand, what people would like to see as we enter our second decade. We have close to one billion dollars left to invest in research so there’s a lot at stake and this is a great chance for patient advocates to help shape our next five years.

Every voice counts, so join us and make sure that yours is heard.

The events are:

San Diego, Monday, July 13th at noon at Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037

Los Angeles: Tuesday, July 14th at noon at Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, 1425 San Pablo Street, 1st floor conf. room Los Angeles, CA 90033

San Francisco: Wednesday, July 15th at noon at CIRM, 210 King Street (3rd floor), San Francisco, CA 94107

There will be parking at each event and a light lunch will be served.

We hope to see you at one of them and if you do plan on coming please RSVP to info@cirm.ca.gov

And of course please feel free to share this invitation to anyone you think might be interested in having their voice heard. We all have a stake in this.