New Video: Paving a path to cures with the Alpha Stem Cell Clinics Network

In The Stem Cellar, you often read phrases like, “as their research progresses toward the clinic.” That’s because it’s a very noteworthy milestone to advance an initial idea in the laboratory to an actual experimental therapy that has approval to be tested in people. It’s a process that can be years in making. Through our support, several research teams in California have successfully delivered innovative stem cell-based therapies to clinical trials.

Now comes the hard part.

The scene shifts from a laboratory bench to hospital beds and clinic rooms with real life patients and a bustling medical staff. Considering many stem cell therapies are first-in-human studies and have no precedent, how do you get these clinical trials up and running?

CIRM_Logo_AlphaClinic_300px

Enter CIRM’s Alpha Stem Cell Clinics Network, a $24 million initiative to provide the infrastructure necessary to get stem cell clinical trials off the ground in the most efficient manner possible. For example, efforts will include (but not limited to) teaching doctors and nurses new skills for administering stem cell therapies, helping to determine how the treatments will be paid for, sharing data between trial sites to improve outcomes, and educating patients about their treatment. We believe this investment will go a long way towards fulfilling the agency’s mission to accelerate the development of stem cell therapies to patients with unmet medical needs.

In late May, the three Network programs from UCSD, City of Hope, and the UCLA/UCI consortium joined CIRM at the City of Hope campus for a kickoff workshop to mark the beginning of the endeavor. We brought our cameras along and produced this short video about the Alpha Stem Cell Clinics Network, which features interviews with each trial center’s program director:

Share your voice, shape our future

shutterstock_201440705There is power in a single voice. I am always reminded of that whenever I meet a patient advocate and hear them talk about the need for treatments and cures – and not just for their particular disease but for everyone.

The passion and commitment they display in advocating for more research funding reflects the fact that everyday, they live with the consequences of the lack of effective therapies. So as we at CIRM, think about the stem cell agency’s future and are putting together a new Strategic Plan to help shape the direction we take, it only makes sense for us to turn to the patient advocate community for their thoughts and ideas on what that future should look like.

That’s why we are setting up three meetings in the next ten days in San Diego, Los Angeles and San Francisco to give our patient advocates a chance to let us know what they think, in person.

We have already sent our key stakeholders a survey to get their thoughts on the general direction for the Strategic Plan, but there is a big difference between ticking a box and having a conversation. These upcoming meetings are a chance to talk together, to explore ideas and really flesh out the details of what this Strategic Plan could be and should be.

Our President and CEO, Dr. C. Randal Mills wants each of those meetings to be an opportunity to hear, first hand, what people would like to see as we enter our second decade. We have close to one billion dollars left to invest in research so there’s a lot at stake and this is a great chance for patient advocates to help shape our next five years.

Every voice counts, so join us and make sure that yours is heard.

The events are:

San Diego, Monday, July 13th at noon at Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037

Los Angeles: Tuesday, July 14th at noon at Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, 1425 San Pablo Street, 1st floor conf. room Los Angeles, CA 90033

San Francisco: Wednesday, July 15th at noon at CIRM, 210 King Street (3rd floor), San Francisco, CA 94107

There will be parking at each event and a light lunch will be served.

We hope to see you at one of them and if you do plan on coming please RSVP to info@cirm.ca.gov

And of course please feel free to share this invitation to anyone you think might be interested in having their voice heard. We all have a stake in this.

Protein Revs Up Bone Stem Cells; Points Toward Future Osteoporosis Drug

Take a moment to feel your arm and wrist bones. They’re a lot more like solid rock than the soft stretchy skin that covers them. But bone is very much a living tissue continually being broken down and built back up in a process called bone remodeling. In people with osteoporosis, this balance tips toward bone breakdown leading to more porous, fragile bones with increased risk of fractures. An estimated ten million people in the U.S. have osteoporosis accounting for 1.5 million fractures annually at a cost of $17 billion in medical care, not to mention the emotional toll of these often debilitating and even life threatening injuries.

Fluorescent imaging mouse spines. Treatment with NELL-1 (right) shows greater bone formation compared to untreated mice (left). Credit: Broad Stem Cell Research Center

Fluorescent imaging of mouse spines. Treatment with NELL-1 (right) shows greater bone formation compared to untreated mice (left). Credit: Broad Stem Cell Research Center

This week a CIRM-funded research team at UCLA reported in Nature Communications that injection of a human protein called NELL-1 into the blood of mice with osteoporosis-like symptoms tipped the balance back toward bone formation. In a large animal study, delivering NELL-1 directly into the spine also led to increased bone volume. In a university press release, co-senior author Kang Ting spoke of his hopes that these results open up a new therapeutic avenue for treating osteoporosis and other ailments:

“Our end goal is really to harness the bone forming properties of NELL-1 to better treat patients with diverse causes of bone loss, from trauma in military personnel to osteoporosis from age, disease or very weak gravity, which causes bone loss in astronauts.”

In petri dish experiments leading up to these animal results, the research team showed that NELL-1 acts by increasing the specialization of mesenchymal stem cells – a type of adult stem cell found in the bone marrow and fat – into osteoblasts, the cells responsible for building new bone. At the same time, NELL-1 reduced the generation of osteoclasts, the cells responsible for the breakdown, or resorption, of bone. This dual action of NELL-1 explains how it improved the osteoporosis-like symptoms in the animals. Check out this fascinating animation for a visual description of osteoblasts and osteoclasts:

Many of the other molecules that promote bone growth aren’t as efficient as NELL-1: while they increase osteoblast numbers they also increase osteoclasts to some extent. For example, Fosamax is a drug prescribed to women with osteoporosis to help build stronger bones but long-term use has been associated with even more brittle bones and fractures. So this finding with NELL-1 sets it apart and hints at fewer side effects as a therapeutic. Still, it’s known to play a role in brain, cartilage, and blood vessel development so careful studies of non-bone effects are needed as the team pursues a road to the clinic.

For more information about CIRM-funded projects related to osteoporosis, visit our online fact sheet.

New tech tool speeds up stem cell research

It’s hard to do a good job if you don’t have the right tools. Now researchers have access to a great new tool that could really help them accelerate their work, a tool its developers say “will revolutionize the way cell biologists develop” stem cell models to test in the lab.

Fluidigm's Castillo system

Fluidigm’s Callisto system

The device is called Callisto™. It was created by Fluidigm thanks to two grants from CIRM. The goal was to develop a device that would allow researchers more control and precision in the ways that they could turn stem cells into different kinds of cell. This is often a long, labor-intensive process requiring round-the-clock maintenance of the cells to get them to make the desired transformation.

Callisto changes that. The device has 32 chambers, giving researchers more control over the conditions that cells are stored in, even allowing them to create different environmental conditions for different groups of cells. All with much less human intervention.

Lila Collins, Ph.D., the CIRM Science Officer who has worked closely with Fluidigm on this project over the years, says this system has some big advantages over the past:

“Creating the optimal conditions for reprogramming, stem cell culture and stem cells has historically been a tedious and manually laborious task. This system allows a user to more efficiently test a variety of cellular stimuli at various times without having to stay tied to the bench. Once the chip is set up in the instrument, the user can go off and do other things.”

Having a machine that is faster and easier to use is not the only advantage Callisto offers, it also gives researchers the ability to systematically and simultaneously test different combinations of factors, to see which ones are most effective at changing stem cells into different kinds of cell. And once they know which combinations work best they can use Callisto to reproduce them time after time. That consistency means researchers in different parts of the world can create cells under exactly the same conditions, so that results from one study will more readily support and reflect results from another.

In a news release about Callisto,  Fluidigm’s President and CEO Gajus Worthington, says this could be tremendously useful in developing new therapies:

“Fluidigm aims to enable important research that would otherwise be impractical. The Callisto system incorporates some of our finest microfluidic technology to date, and will allow researchers to quickly and easily create complex cell culture environments. This in turn can help reveal how stems cells make fate decisions. Callisto makes challenging applications, such as cellular reprogramming and analysis, more accessible to a wide range of scientists. We believe this will move biological discovery forward significantly.”

And as Collins points out, Callisto doesn’t just do this on a bulk level, working with millions of cells at a time, the way the current methods do:

“Using a bulk method it’s possible that one might miss an important event in the mixture. The technology in this system allows the user to stimulate and study individual cells. In this way, one could measure changes in small sub-populations and find ways to increase or decrease them.”

Having the right tools doesn’t always mean you are going to succeed, but it certainly makes it a lot easier.

One man’s story points to hope against a deadly skin cancer

One of the great privileges and pleasures of working at the stem cell agency is the chance to meet and work with some remarkable people, such as my colleagues here at CIRM and the researchers we support. But for me the most humbling, and by far the most rewarding experience, is having a chance to get to know the people we work for, the patients and patient advocates.

Norm Beegun, got stem cell therapy for metastatic melanoma

Norm Beegun, got stem cell therapy for metastatic melanoma

At our May Board meeting I got to meet a gentleman who exemplifies everything that I truly admire about the patients and patient advocates. His name is Norm Beegun. And this is his story.

Norm lives in Los Angeles. In 2002 he went to see his regular doctor, an old high school friend, who suggested that since it had been almost ten years since he’d had a chest x-ray it might be a good idea to get one. At first Norm was reluctant. He felt fine, was having no health problems and didn’t see the need. But his friend persisted and so Norm agreed. It was a decision that changed, and ultimately saved, his life.

The x-ray showed a spot on his lung. More tests were done. They confirmed it was cancer; stage IV melanoma. They did a range of other examinations to see if they could spot any signs of the cancer on his skin, any potential warnings signs that they had missed. They found nothing.

Norm underwent surgery to remove the tumor. He also tried several other approaches to destroy the cancer. None of them worked; each time the cancer returned; each time to a different location.

Then a nurse who was working with him on these treatments suggested he see someone named Dr. Robert Dillman, who was working on a new approach to treating metastatic melanoma, one involving cancer stem cells.

Norm got in touch with Dr. Dillman and learned what the treatment involved; he was intrigued and signed up. They took some cells from Norm’s tumor and processed them, turning them into a vaccine, a kind of personalized therapy that would hopefully work with Norm’s own immune system to destroy the cancer.

That was in 2004. Once a month for the next six months he was given injections of the vaccine. Unlike the other therapies he had tried this one had no side effects, no discomfort, no pain or problems. All it did was get rid of the cancer. Regular scans since then have shown no sign that the melanoma has returned. Theoretically that could be because the new therapy destroyed the standard tumor cells as well as the cancer stem cells that lead to recurrence.

Norm says when you are diagnosed with an incurable life-threatening disease, one with a 5-year survival rate of only around 15%, you will try anything; so he said it wasn’t a hard decision to take part in the clinical trial, he felt he had nothing to lose.

“I didn’t know if it would help me. I didn’t think I’d be cured. But I wanted to be a guinea pig and perhaps help others.”

When he was diagnosed his son had just won a scholarship to play football at the University of California, Berkeley. Norm says he feared he would never be able to see his son play. But thanks to cleverly scheduling surgery during the off-season and having a stem cell therapy that worked he not only saw his son play, he never missed a game.

Norm returned to Berkeley on May 21st, 2015. He came to address the CIRM Board in support of an application by a company called NeoStem (which has just changed its name to Caladrius Biosciences). This was the company that had developed the cell therapy for metastatic melanoma that Norm took.

“Talking about this is still very emotional. When I got up to talk to the CIRM Board about this therapy, and ask them to support it, I wanted to let them know my story, the story of someone who had their life saved by this treatment. Because of this I am here today. Because of this I was able to see my son play. But just talking about it left me close to tears.”

It left many others in the room close to tears as well. The CIRM Board voted to fund the NeoStem application, investing $17.7 million to help the company carry out a Phase 3 clinical trial, the last hurdle it needs to clear to prove to the Food and Drug Administration that this should be approved for use in metastatic melanoma.

Norm says he is so grateful for the extra years he has had, and he is always willing to try and support others going through what he did:

“I counsel other people diagnosed with metastatic melanoma. I feel that I want to help others, to give them a sense of hope. It is such a wonderful feeling, being able to show other people that you can survive this disease.”

When you get to meet people like Norm, how could you not love this job.

Old brains in mice given a trait of young brains with embryonic nerve transplant

As we age our brains become less adept at making new nerve connections or repairing broken ones. A CIRM-funded team at the University of California, Irvine, restored this youthful ability, called nerve plasticity, to adult mice by transplanting embryonic nerve cells.

old to young

Specifically, they worked with mice that had a form of blurred vision known as amblyopia and the nerve cells they transplanted were ones that produce the nerve signal GABA. That amino acid helps regulate many aspects of brain function, including vision. The transplanted nerve cells allowed the brain to rewire itself and make connections that were missing and causing the poor vision. Several weeks later, the mice started to see normally.

The researchers transplanted the new cells directly into the visual cortex where the new nerve connections were needed. The mice had developed amblyopia, like humans, because the proper nerve connections failed to develop during a critical period when they were young. At the point in time that the transplanted embryonic cells would be going through that same critical period is when the researchers saw the improvement in vision for the adult mice. In a press release picked up at MedMerits.com the leader of the team, Sonil Gandhi explained what they saw:

“These experiments make clear that developmental mechanisms located within these GABA cells control the timing of the critical period.”

Gandhi added that the work should open up the possibility of trying to use GABA cell transplants to retrain the brain after injury or to repair congenital defects.

The news site NewsMax wrote an article on the research adding a bit more analysis.

A hopeful sight: therapy for vision loss cleared for clinical trial

Rosalinda Barrero

Rosalinda Barrero, has retinitis pigmentosa

Rosalinda Barrero says people often thought she was rude, or a snob, because of the way she behaved, pretending not to see them or ignoring them on the street. The truth is Rosalinda has retinitis pigmentosa (RP), a nasty disease, one that often attacks early in life and slowly destroys a person’s vision. Rosalinda’s eyes look normal but she can see almost nothing.

“I’ve lived my whole life with this. I told my daughters [as a child] I didn’t like to go Trick or Treating at Halloween because I couldn’t see. I’d trip; I’d loose my candy. I just wanted to stay home.”

Rosalinda says she desperately wants a treatment:

“Because I’m a mom and I would be so much a better mom if I could see. I could drive my daughters around. I want to do my part as a mom.”

Now a promising therapy for RP, funded by the stem cell agency, has been cleared by the Food and Drug Administration (FDA) to start a clinical trial in people.

The therapy was developed by Dr. Henry Klassen at the University of California, Irvine (UCI). RP is a relatively rare, inherited condition in which the light-sensitive cells at the back of the retina, cells that are essential for vision, slowly and progressively degenerate. Eventually it can result in blindness. There is no cure and no effective long-term treatment.

Dr. Klassen’s team will inject patients with stem cells, known as retinal progenitors, to help replace those cells destroyed by the disease and hopefully to save those not yet damaged.

In a news release about the therapy Dr. Klassen said the main goal of this small Phase I trial will be to make sure this approach is safe:

“This milestone is a very important one for our project. It signals a turning point, marking the beginning of the clinical phase of development, and we are all very excited about this project.”

Jonathan Thomas, the Chair of our Board, says that CIRM has invested almost $20 million to help support this work through early stage research and now, into the clinic.

“One of the goals of the agency is to provide the support that promising therapies need to progress and ultimately to get into clinical trials in patients. RP affects about 1.5 million people worldwide and is the leading cause of inherited blindness in the developed world. Having an effective treatment for it would transform people’s lives in extraordinary ways.”

Dr. Klassen says without that support it is doubtful that this work would have progressed as quickly as it has. And the support doesn’t just involve money:

“CIRM has played a critical and essential role in this project. While the funding is extremely important, CIRM also tutors and guides its grantees in the many aspects of translational development at every step of the way, and this accelerates during the later pre-clinical phase where much is at stake.”

This is now the 12th project that we are funding that has been approved by the FDA for clinical trials. It’s cause for optimism, but cautious optimism. These are small scale, early phase trials that in many cases are the first time these therapies have been tested in people. They look promising in the lab. Now it’s time to see if they are equally promising in people.

Considering we didn’t really start funding research until 2007 we have come a long way in a short time. Clearly we still have a long way to go. But the news that Dr. Klassen’s work has been given the go-ahead to take the next, big step, is a hopeful sign for Rosalinda and others with RP that we are at least heading in the right direction.

One of our recent Spotlight on Disease videos features Dr. Klassen and Rosalinda Barrero talking about RP.

This work will be one of the clinical trials being tested in our new Alpha Stem Cell Clinic Network. You can read more about that network here.

Scientists Sink their Teeth into Stem Cell Evolution

Sometimes, answers to biology’s most important questions can be found in the most unexpected of places.

As reported in the most recent issue of the journal Cell Reports, researchers at the University of California, San Francisco (UCSF) and the University of Helsinki describe how studying fossilized rodent teeth has helped them inch closer to grasping the origins of a particular type of stem cell.

Rodents' ever-growing teeth hold clues to the evolution of stem cells, according to a new study.

Rodents’ ever-growing teeth hold clues to the evolution of stem cells, according to a new study.

Understanding the microenvironment that surrounds each stem cell, known as a stem cell niche, is key to grasping the key mechanisms that drive stem cell growth. But as UCSF scientist Ophir Klein explained, many aspects remain a mystery.

“Despite significant recent strides in the field of stem cell biology, the evolutionary mechanisms that give rise to novel stem cell niches remain essentially unexplored,” said Klein, who served as the study’s senior author. “In this study, we have addressed this central question in the fields of evolutionary and developmental biology.”

In this study, Klein and his team focused on the teeth of extinct rodent species. Why? Because many species of rodent—both extinct species and those alive today—have what’s called ‘ever-growing teeth.’

Unlike most mammals, including we humans, the teeth of some rodent species continue to grow as adults—with the help of stem cell ‘reservoir’ hidden inside the root.

And by analyzing the fossilized teeth of extinct rodent species, the researchers could gain some initial insight into how these reservoirs—which were essentially a type of stem cell niche—evolved.

Most stem cell niche studies take cell samples from hair, blood or other live tissue. Teeth, as it turns out, are the only stem cell niches that can be found in fossil form.

In fact, teeth are “the only proxy…for stem cell behavior in the fossil record,” says Klein.

After analyzing more than 3,000 North American rodent fossils that varied in age between 2 and 50 million years ago, the researchers began to notice a trend. The earlier fossils showed short molar teeth. But over the next few million years, the molars began to increase in length. Interestingly, this coincided with the cooling of the climate during the Cenozoic Period. The types of food available in this cooler, drier climate likely became tougher and more abrasive—leading to evolutionary pressures that selected for longer teeth. By 5 million years ago, three-quarters of all species studied had developed the capability for ever-growing teeth.

The team’s models suggest that this trend has little chance of slowing down, and predicts that more than 80% of rodents will adopt the trait of ever-growing teeth.

The next step, says Klein, is to understand the genetic mechanism that is behind the evolutionary change. He and his team, including the study’s first author Vagan Tapaltsyan, will study mice to test the link between the genetics of tooth height and the appearance of stem cell reservoirs.

Brain’s Own Activity Can Fuel Growth of Deadly Brain Tumors, CIRM-Funded Study Finds

Not all brain tumors are created equal—some are far more deadly than others. Among the most deadly is a type of tumor called high-grade glioma or HGG. Most distressingly, HGG’s are the leading cause of brain tumor death in both children and adults. And despite extraordinary progress in cancer research as a whole, survival rates for those diagnosed with an HGG have yet to improve.

shutterstock_30402241

But recent research from Stanford University scientists could one day help move the needle—and give renewed hope to the patients and their families affected by this devastating disease.

The study, published today in the journal Cell, found that one key driver for HGG’s deadly diagnosis is that the tumor can be stimulated to grow by the brain’s own neural activity—specifically the nerve activity in the brain’s cerebral cortex.

Michelle Monje, senior author of the study that was funded in part by two grants from CIRM, was initially surprised by these results, as they run counter to how most types of tumors grow. As she explained in today’s press release:

“We don’t think about bile production promoting liver cancer growth, or breathing promoting the growth of lung cancer. But we’ve shown that brain function is driving these brain cancers.”
 


By analyzing tumor cells extracted from HGG patients, and engrafting it onto mouse models in the lab, the researchers were able to pinpoint how the brain’s own activity was driving tumor growth.

The culprit: a protein called neuroligin-3 that appeared to be calling the shots. There are four distinct types of HGGs that affect the brain in vastly different ways—and have vastly different molecular and genetic characteristics. Interestingly, says Monje, neuroligin-3 played the same role in all of them.

What was so disturbing to the research team, says Monje, is that neuroligin-3 is an essential protein for overall brain development. Specifically, it helps maintain healthy growth and repair of brain tissue over time. In order to grow, HGG tumors hijack this critical protein.

The research team came to this conclusion after a series of experiments that delved deep into the molecular mechanisms that guide both brain activity and brain tumor development. They first employed a technique called optogenetics, whereby scientists use genetic manipulation to insert light-sensitive proteins into the brain cells, or neurons, of interest. This allowed scientists to activate these neurons—or deactivate them—at the ‘flick of a switch.’

When applying this technique to the tumor-engrafted mouse models, the team could then see that tumors grew significantly better when the neurons were switched on. The next step was to narrow it down to why. Additional biochemical analyses and testing on the mouse models confirmed that neuroligin-3 was being hijacked by the tumor to spur growth.

And when they dug deeper into the connection between neuroligin-3 and cancer, they found something even more disturbing. A detailed look at the Cancer Genome Atlas (a large public database of the genetics of human cancers), they found that HGG patients with higher levels of neuroligin-3 in their brain had shorter survival rates than those with lower levels of the same protein.

These results, while highlighting the particularly nefarious nature of this class of brain tumors, also presents enormous opportunity for researchers. Specifically, Monje hopes her team and others can find a way to block or nullify the presence of neuroligin-3 in the regions surrounding the tumor, creating a kind of barrier that can keep the size of the tumor in check. 


Molecular Trick Diminishes Appearance of Scars, Stanford Study Finds

Every scar tells a story, but that story may soon be coming to a close, as new research from Stanford University reveals clues to why scars form—and offers clues on how scarring could become a thing of the past.

Reported last week in the journal Science, the research team pinpointed the type of skin cell responsible for scarring and, importantly, also identified a molecule that, when activated, can actually prevent the skin cells from forming a scar. As one of the study’s senior authors Michael Longaker explained in a press release, the biomedical burden of scarring is vast.

Scars, both internal and external, present a significant biomedical burden.

Scars, both internal and external, present a significant biomedical burden.

“About 80 million incisions a year in this country heal with a scar, and that’s just on the skin alone,” said Longaker, who also co-directs Stanford’s Institute for Stem Cell Biology and Regenerative Medicine. “Internal scarring is responsible for many medical conditions, including liver cirrhosis, pulmonary fibrosis, intestinal adhesions and even the damage left behind after a heart attack.”

Scars are normally formed when a type of skin cell called a fibroblast secretes a protein called collagen at the injury site. Collagen acts like a biological Band-Aid that supports and stabilizes the damaged skin.

In this study, which was funded in part by a grant from CIRM, Longaker, along with co-first authors Yuval Rinkevich and Graham Walmsley, as well as co-senior author and Institute Director Irving Weissman, focused their efforts on a type of fibroblast that appeared to play a role in the earliest stages of wound healing.

This type of fibroblast stands out because it secretes a particular protein called engrailed, which initial experiments revealed was responsible for laying down layers of collagen during healing. In laboratory experiments in mouse embryos, the researchers labeled these so-called ‘engrailed-positive fibroblast cells,’ or EPF cells, with a green fluorescent dye. This helped the team track how the cells behaved as the mouse embryo developed.

Interestingly, these cells were also engineered to self-destruct—activated with the application of diphtheria toxin—so the team could monitor what would happen in the absence of EPF cells entirely.

Their results revealed strong evidence that EPF cells were critical for scar formation. The scarring process was so tied to these EPF cells that when the team administered the toxin to shut them down, scarring reduced significantly.

Six days later the team found continued differences between mice with deactivated EPF cells, and a group of controls. Indeed, the experimental group had repaired skin that more closely resembled uninjured skin, rather than the distinctive scarring pattern that normally occurs.

Further examination of EPF cells’ precise function revealed a protein called CD26 and that blocking EPF’s production of CD26 had the same effect as shutting off EPF cells entirely. Wounds treated with a CD26 inhibitor had scars that covered only 5% of the original injury site, as opposed to 30%.

Pharmaceutical companies Merck and Novartis have already manufactured two types of CD26 inhibitor, originally developed to treat Type II diabetes, which could be modified to block CD26 production during wound healing—a prospect that the research team is examining more closely.