If you want to accelerate stem cell therapies then create an Accelerating Center

Buckle up

Buckle up, we’re about to Accelerate

“You can’t teach fish to fly,” is one of the phrases that our CIRM President & CEO, Randy Mills, likes to throw out when asked why we needed to create new centers to help researchers move their most promising therapies out of the lab and into clinical trials.

His point is that many researchers are terrific at research but not so great at the form filling and other process-oriented skills needed to get approval from the Food and Drug Administration (FDA) for a clinical trial.

So instead of asking them to learn how to do all those things, why don’t we, CIRM, create a system that will do it for them? And that’s where we came up with the idea for the Accelerating Center (we’re also creating a Translating Center – that’s a topic for a future blog but if you can’t wait to find out the juicy details you can find them here.)

The Accelerating Center will be a clinical research organization that provides regulatory, operational and other support services to researchers and companies hoping to get their stem cell therapies into a clinical trial. The goal is to match the scientific skills of researchers with the regulatory and procedural skills of the Accelerating Center to move these projects through the review process as quickly as possible.

But it doesn’t end there. Once a project has been given the green light by the FDA, the Accelerating Center will help with actually setting up and running their clinical trial, and helping them with data management to ensure they get high quality data from the trial. Again these skills are essential to run a good clinical trial but things researchers may not have learned about when getting a PhD.

We just issued what we call an RFA (Request for Applications)  for people interested in partnering with us to help create the Accelerating Center. To kick-start the process we are awarding up to $15 million for five years to create the Center, which will be based in California.

To begin with, the Accelerating Center will focus on supporting CIRM-funded stem cell projects. But the goal is to eventually extend that support to other stem cell programs.

Now, to be honest, there’s an element of self-interest in all this. We have a goal under our new Strategic Plan of funding 50 new clinical trials over the next five years. Right now, getting a stem cell-related project approved is a slow and challenging process. We think the Accelerating Center is one tool to help us change that and give the most promising projects the support they need to get out of the lab and into people.

There’s a lot more we want to do to help speed up the approval process as well, including working with the FDA to create a new, streamlined regulatory process, one that is faster and easier to navigate. But that may take some time. So in the meantime, the Accelerating Center will help “fish” to do what they do best, swim, and we’ll take care of the flying for them.

 

 

 

New Stem Cell Treatment for ALS May Slow Disease Progression

Exciting news was published this week that will give patients suffering from ALS, also known as Lou Gehrig’s disease, something to cheer about. The journal JAMA Neurology reported that a new stem cell treatment was successful in slowing disease progression in a small group of ALS patients in a Phase 2 clinical trial.

This is big news for a fatal, incurable disease that is well known for its progressive, degenerating effects on nerve cells in the brain and spinal cord. We’ve written about ALS a lot in the Stem Cellar, so if you want more background on the disease, read our “Progress to a Cure for ALS” blog.

A patient’s own stem cells can help

The stem cell therapy involves extracting mesenchymal stem cells from the bone marrow of ALS patients. These stem cells are then manipulated in culture into cells that secrete a growth factor called NeuroTrophic Factor (NTF), which helps keep nerve cells in the brain and spinal cord healthy and alive. The NTF-secreting stem cells (called NurOwn cells) are then transplanted back into the same ALS patient (making this an autologous stem cell therapy) by injection into either the spinal fluid or the muscles.

logoThe NurOwn method was developed by BrainStorm Cell Therapeutics, a biotech company based in the US and Israel. Clinical trials to test the safety and efficacy of NurOwn stem cells began in 2011 at the Hadassah Medical Organization (HMO). So far, 26 patients have participated in the trials both in the US and in Israel.

According to the JAMA publication, patients were monitored 3 months before and 6 months after they received stem cell transplants and 6 months after. Twelve of the 26 patients participated in an early stage of the trial (phase 1/2) to test the safety and tolerability of the stem cell therapy. The other 14 patients participated in a later stage (phase 2a), dose-escalating study where their modified stem cells were injected into both their spinal fluid and muscles. Following the treatment, the scientists looked at the safety profile of the transplanted stem cells and for signs of clinical improvement in patients such as their ease of breathing or ability to control their muscle movement.

Stem cell treatment is effective in most ALS patients

Results from the clinical trial showed that a majority of the patients benefitted from the NurOwn stem cell therapy. HMO Principle scientist and senior author on the study, Dr. Dimitrios Karussis, explained:

Dr. Dimitrios Karussis (Image credit: Israel21c)

Dimitrios Karussis (Israel21c)

“The results are very encouraging.  Close to 90% of patients who were injected intrathecally through the spinal cord fluid were regarded as responders to the treatment either in terms of their respiratory function or their motor disability.  Almost all of the patients injected in this way showed less progression and some even improved in their respiratory functions or their motor functions.”

A PRNewswire press release covering this study called the stem cell therapy the “first-of-its-kind treatment for treating neurodegenerative diseases.”

Not a cure just yet

This stem cell therapy will need to be tested in more patients before the it can be determined truly effective in slowing progression of ALS. And Dr. Karussis was quick to note that the NurOwn stem cell therapy isn’t a cure for ALS, but rather an early-stage therapy that will provide significant benefit to patients by slowing disease progression.

“I am optimistic that within the foreseeable future, we may provide a treatment to ALS patients that can slow down or stop the progression. I believe we are in the early stages of something new and revolutionary with this harvested stem cell infusion therapy.  While this is absolutely by no means a cure, it is the first step in a long process in that direction.  I see this treatment as being potentially one of the major future tools to treat degenerative diseases of the brain and spinal cord, in general.”

Other stem cell treatments for ALS in the works

A single stem cell therapy that could treat multiple neurodegenerative diseases would be extremely valuable to patients and doctors. However, it’s not clear that the “one ring to rule them all” scenario (couldn’t help making a Lord of the Rings reference) will play out well for all diseases that affect the brain and spinal cord. Luckily, Dr. Karussis and Brainstem Cell Therapeutics are not the only ones pursuing stem cell therapies for ALS.

Clive Svendsen has been on a 15-year quest to develop an ALS therapy

Clive Svendsen

CIRM is currently funding 21 studies (a total of $56.6 million) that use stem cells to either study ALS or to develop therapies to treat the disease. We wrote about one recent study by Clive Svendsen at Cedars Sinai which is using a combination of gene therapy and brain stem cells to deliver growth factors to protect nerve cells in the brain and spinal cord of ALS patients. Currently, Svendsen and his team are in the latter stages of research and hope to apply for FDA approval to test their therapy in patients in the near future. Svendsen told CIRM, “we will begin recruiting patients the first week we have approval.”


Related Links:

What Went Down at ARM’s Regenerative Medicine State of the Industry

Every January, downtown San Francisco is taken over by a flock of investors, bankers, biotech companies, and scientists attending the annual JP Morgan Healthcare Conference. This meeting looks at the healthcare advancements over the past year and predicts the disease areas and technologies that will see the most progress and success in 2016.

According to some of the experts at the event, regenerative medicine and stem cell research are experiencing impressive, accelerated advancements, which has peaked the interest of investors, biotech, and pharmaceutical companies.

Because these are such fast paced fields, the Alliance for Regenerative Medicine (ARM) hosts the Annual Regenerative Medicine and Advanced Therapies State of the Industry Briefing during JP Morgan to discuss the recent progress and outlook for the industry in the coming year.

Screen Shot 2016-01-11 at 4.03.30 PM

What happened in 2015 and what’s next?

ARM’s  6th Annual Briefing was open to the public and drew over 300 people on Monday morning. The meeting opened with an industry update from Edward Lanphier, ARM Chairman and President/CEO of Sangamo BioSciences.  Then two panels featuring top leaders from biotech and pharmaceutical companies discussed the 2016 clinical data forecast and the promise of regenerative medicine and advanced therapies in oncology (cancer).

With an upbeat attitude, Lanphier gave an overview of clinical development progress in 2015, with 20 approved products worldwide and over 600 clinical trials both from academia and industry. More than 40% of these ongoing clinical trials are in cancer while approximately 12% are in heart disease/injury. These trials are not limited to Phase 1 either. In 2015, there were 376 in Phase 2 (compared to 200 in 2014) and 64 in Phase 3 (compared to 39 in 2014).

Edward Lanphier

Edward Lanphier

Two other areas Lanphier emphasized were CAR-T and other cell-based immunotherapies and gene therapy programs for rare diseases. He ended with 2015 statistics on clinical milestones in various disease and therapy programs, key company IPOs, the financial landscape, and predictions of major anticipated data from clinical trials in 2016.

It was a lot to take in, but this was definitely a good thing and a sign that the areas of regenerative medicine and advanced therapies are thriving. If you want more details, you can check out ARM’s State of the Industry presentation.

Major Theme: Data is King

The major theme that cropped up during the industry update and panel discussions was the importance of producing meaningful clinical data to get positive outcomes in regenerative medicine.

This was succinctly put by panelist Sven Kili, head of Gene Therapy Development at GlaxoSmithKline:

“I would say “Data is King”. A great idea is fantastic, passion is wonderful, and most companies will buy into a strong management team, but that only gets you so far. After that you need to have data, and you need to have a good plan for going forward.”

Kill added that there’s the need to work with the FDA to change the regulatory process, saying the FDA is, understandably, cautious about working with therapies that can alter a person’s genome permanently. However, he said there needs to be serious discussions with the FDA about how to speed up the process, to make it easier for the most promising projects to get approval.

Edward Lanphier also talked about the industry’s new focus on clinical data and the questions that arise when trying to advance regenerative medicine research into approved treatments and cures for patients:

“How do we communicate the value of curing blindness? How do we think about pricing that? What do we think about [drug] reimbursement?  For rare diseases, we aren’t trying to talk about acute treatments – we are talking about one-time, curative outcomes. And the value and benefit to patients in this is enormous. This is what we are trying to do, and on the cusp of, in terms of generating both approvable data and also the proof of concept data that then allows us to drive that next value inflection point in terms of financings.”

The Future Looks Good

After listening to the briefing, the future of regenerative medicine and advanced therapies certainly looks bright. As Jason Kolbert, head of Healthcare Research at the Maxim Group, said:

“This industry is now rapidly maturing and regenerative medicine and gene therapy have great things in store for the next decade.”

Usman Azam, Global Head of Cell and Gene Therapies at Novartis, had a similar outlook:

“We now are going from proof of concept to commercial availability of a disruptive innovation within seven years. If somebody had said that to me four years ago, I would have said, not possible. But that gives you a sense of how quickly this field is moving.”

Experts Panel

ARM Panel: 2016 Sector Forecast: Upcoming Clinical Data Events

CIRM-funded clinical trial for spinal cord injury reports promising results

Today, the Menlo Park-based biotech company Asterias Biotherapeutics reported positive results from the first three patients treated in its Phase 1/2a clinical study using stem cell therapy to treat patients with spinal cord injury. This trial is funded by a CIRM Strategic Partnerships Award grant of $14.3 million.

asteriasAsterias has developed a stem cell therapy called AST-OPC1 that uses oligodendrocyte progenitor cells (OPCs), a kind of cell found in the nervous system, to treat patients that have suffered from different types of spinal cord injury. Damage to the spinal cord causes a range of paralysis based on where it occurs. People with spinal cord trauma to the mid-back often retain the use of their hands and arms but can no longer walk and may lose bladder function. Patients with spinal cord injuries in their neck  can be paralyzed completely from their neck down.

astopc1OPCs are precursors to an important cell type in the central nervous system called the oligodendrocyte. These cells are responsible for forming a conductive sheet around nerve cells that allows nerves to send electrical signals and messages safely from one nerve to another. Both OPCs and oligodendrocytes provide support and protection to nerves in the spinal cord and brain, and they can also facilitate repair of damaged nerves by secreting survival and growth factors as well as promoting the formation of new blood vessels.

In this first part of the Phase 1/2a clinical trial three patients with complete cervical (neck) spinal cord injuries were given a “low dose” of two million AST-OPC1 cells to test the safety and feasibility of their stem cell treatment. The first patient was treated at the Shepard Center in Atlanta,  and at the two month post-injection assessment, the patient experienced no side effects and an improvement from a complete to an incomplete injury on the ASIA impairment injury scale. The other two patients received injections at the Rush University Medical Center in Chicago. Both procedures were reported to have gone smoothly, and the patients are still being monitored.

Asterias plans to treat a second group of patients with higher doses of AST-OPC1 cells (10-20 millions cells). Chief Medical Officer Dr. Edward Wirth explained their strategy:

 The safety data in the first cohort now paves the way for testing the higher doses of AST-OPC1 (10-20 million cells) that we believe correspond most closely to the doses that showed the greatest efficacy in animal studies.

If both the low dose and high dose groups report no serious side effects, Asterias will turn to the Food and Drug Administration (FDA) for approval to expand the patient population of this clinical trial phase from 13 patients up to 40. Asterias hopes that adding more patients “will increase the statistical confidence of the safety and efficacy readouts, reduce the risks of the AST-OPC1 program and position the product for potential accelerated regulatory approvals.”

Spinal cord injury affects more than 12,000 people every year. It remains a major unmet medical need without any FDA-approved therapies or medical devices that improve or restore patient spinal cord function. CIRM is hopeful that Asterias will continue to see positive results with the SCiStar trial and will be able to progress its AST-OPC1 program into late-stage clinical trials and eventually into an FDA-approved stem cell therapy for spinal cord injury.


Related links

Global stem cell market predicted to reach $40 billion in five years, even bigger when mixed with new technologies

The global consulting firm Frost and Sullivan held a webinar yesterday in which they noted health care systems everywhere are facing an increasing challenge of costly chronic care. They suggested health care providers have started to embrace regenerative medicine as a viable alternative.

Because of its power to change the course of disease, the consultants called regenerative medicine, and stem cell therapies in particular, a new paradigm in human health.

“Regenerative Medicine initiatives are now attracting new public and private funding,” said the firm’s Jane Andrews in a widely picked up press release, including this post at CNBC. “Although Stem Cell Therapy will continue to be the largest market segment of Regenerative Medicine, cross segment therapies that combine the use of immunology, genetic and stem cell therapy are rapidly advancing,”

CIRM funds projects in all these technologies so it is always nice to see others joining the fight. We recently posted a series of stories about our portfolio of clinical trials that combine cell therapy and gene therapy.

The report predicts the global stem cell therapy market will reach $40 billion in five years by 2020. It also suggests that just the US market will reach $180 billion by 2030.

The firm does raise a cautionary note about the inadequacy of funding for early stage clinical work with these therapies. Our President and CEO Randall Mills has also raised an alarm about this issue and called on industry to increase its support for this work.

Organized by the Asia-Pacific branch of Frost and Sullivan the webinar breaks out the markets for Japan, Korea and Singapore. The webinar itself is available on line.

Conference provides critical connections between clinical projects and investors

Having a mission like CIRM’s, which calls on us to develop therapies for unmet medical needs, clearly means we cannot sit back and marvel at all the great projects we have in the pipeline. We have to deliver commercial products available to all patients in need. And that cannot be done without additional investors.

The Alliance for Regenerative Medicine (ARM) takes that maxim seriously as well. The international advocacy organization, of which CIRM was a founding member five years ago, will host its third annual RegenMed Investor Day in New York City next Wednesday March 25.
ARM-logo-sm
During the full-day event 32 companies will present their progress to a wide array of investors. Traditional venture capital investors will be represented alongside investors from institutions and multinational pharmaceutical giants.

The day will be rounded out with three panel discussions and two fireside chats with market research analysts, company CEOs and leading clinicians. The fireside chat during lunch will feature CIRM President and CEO Dr. C. Randall Mills who will talk about public-private partnerships making joint investments to bring therapies to patients, and how the revised work plan we call CIRM 2.0 will make it easier for companies to work together with CIRM to advance promising therapies.

Getting just the eleven projects CIRM is funding in clinical trials today through to commercial products will require a broad mix of funding partnerships. With our portfolio and that of the industry as a whole growing rapidly, conferences like this one are critical.

One-Time, Lasting Treatment for Sickle Cell Disease May be on Horizon, According to New CIRM-Funded Study

For the nearly 1,000 babies born each year in the United States with sickle cell disease, a painful and arduous road awaits them. The only cure is to find a bone marrow donor—an exceedingly rare proposition. Instead, the standard treatment for this inherited blood disorder is regular blood transfusions, with repeated hospitalizations to deal with complications of the disease. And even then, life expectancy is less than 40 years old.

In Sickle Cell Disease, the misshapen red blood cells cause painful blood clots and a host of other complications.

In Sickle Cell Disease, the misshapen red blood cells cause painful blood clots and a host of other complications.

But now, scientists at UCLA are offering up a potentially superior alternative: a new method of gene therapy that can correct the genetic mutation that causes sickle cell disease—and thus help the body on its way to generate normal, healthy blood cells for the rest of the patient’s life. The study, funded in part by CIRM and reported in the journal Blood, offers a great alternative to developing a functional cure for sickle cell disease. The UCLA team is about to begin a clinical trial with another gene therapy method, so they—and their patients—will now have two shots on goal in their effort to cure the disease.

Though sickle cell disease causes dangerous changes to a patient’s entire blood supply, it is caused by one single genetic mutation in the beta-globin gene—altering the shape of the red blood cells from round and soft to pointed and hard, thus resembling a ‘sickle’ shape for which the disease is named. But the UCLA team, led by Donald Kohn, has now developed two methods that can correct the harmful mutation. As he explained in a UCLA news release about the newest technique:

“[These results] suggest the future direction for treating genetic diseases will be by correcting the specific mutation in a patient’s genetic code. Since sickle cell disease was the first human genetic disease where we understood the fundamental gene defect, and since everyone with sickle cell has the exact same mutation in the beta-globin gene, it is a great target for this gene correction method.”

The latest gene correction technique used by the team uses special enzymes, called zinc-finger nucleases, to literally cut out and remove the harmful mutation, replacing it with a corrected version. Here, Kohn and his team collected bone marrow stem cells from individuals with sickle cell disease. These bone marrow stem cells would normally give rise to sickle-shaped red blood cells. But in this study, the team zapped them with the zinc-finger nucleases in order to correct the mutation.

Then, the researchers implanted these corrected cells into laboratory mice. Much to their amazement, the implanted cells began to replicate—into normal, healthy red blood cells.

Kohn and his team worked with Sangamo BioSciences, Inc. to design the zinc-finger nucleases that specifically targeted and cut the sickle-cell mutation. The next steps will involve improving the efficiency and safest of this method in pre-clinical animal models, before moving into clinical trials.

“This is a promising first step in showing that gene correction has the potential to help patients with sickle cell disease,” said UCLA graduate student Megan Hoban, the study’s first author. “The study data provide the foundational evidence that the method is viable.”

This isn’t the first disease for which Kohn’s team has made significant strides in gene therapy to cure blood disorders. Just last year, the team announced a promising clinical trial to cure Severe Combined Immunodeficiency Syndrome, also known as SCID or “Bubble Baby Disease,” by correcting the genetic mutation that causes it.

While this current study still requires more research before moving into clinical trials, Kohn and his team announced last month that their other gene therapy method, also funded by CIRM, has been approved to start clinical trials. Kohn argues that it’s vital to explore all promising treatment options for this devastating condition:

“Finding varied ways to conduct stem cell gene therapies is important because not every treatment will work for every patient. Both methods could end up being viable approaches to providing one-time, lasting treatments for sickle cell disease and could also be applied to the treatment of a large number of other genetic diseases.”

Find Out More:
Read first-hand about Sickle Cell Disease in our Stories of Hope series.
Watch Donald Kohn speak to CIRM’s governing Board about his research.

Stem cell stories that caught our eye; progress toward artificial brain, teeth may help the blind and obesity

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

More progress toward artificial brain. A team at the RIKEN Institute in Japan has used stem cells in a 3-D culture to create brain tissue more complex than prior efforts and from an area of the brain not produced before, the cerebellum—that lobe at the lower back of the brain that controls motor function and attention. As far back as 2008, a RIKEN team had created simple tissue that mimicked the cortex, the large surface area that controls memory and language.

shutterstock_93075775

The Inquisitr web portal wrote a feature on a wide variety of efforts to create an artificial brain teeing off of this week’s publication of the cerebellum work in Cell Reports. The piece is fairly comprehensive covering computerized efforts to give robots intelligence and Europe’s Human Brain Project that is trying to map all the activity of the brain as a starting point for recapitulating it in the lab.

The experts interviewed included Robert Caplan of Tufts University in Massachusetts who is using 3-D scaffolding to build functional brain tissues that can process electrical signals. He is not planning any Frankenstein moments; he hopes to create models to improve understanding of brain diseases.

“Ideally we would like to have a laboratory brain system that recapitulates the most devastating diseases. We want to be able to take our existing toolkit of drugs and understand how they work instead of using trial and error.”

Teeth eyed as source of help for the blind. Today the European Union announced the first approval of a stem cell therapy for blindness. And already yesterday a team at the University of Pittsburg announced they had developed a new method to use stem cells to restore vision that could expand the number of patients who could benefit from stem cell therapy.

Many people have lost part or all their vision due to damage to the cornea on the surface of their eye. Even when they can gain vision back through a corneal transplant, their immune system often rejects the new tissue. So the ideal would be making new corneal tissue from the patient’s own cells. The Italian company that garnered the EU approval does this in patients by harvesting some of their own cornea-specific stem cells, called limbal stem cells. But this is only an option if only one eye is impacted by the damage.

The Pittsburgh team thinks it may have found an unlikely alternative source of limbal cells: the dental pulp taken from teeth that have be extracted. It is not as far fetched at it sounds on the surface. Teeth and the cornea both develop in the same section of the embryo, the cranial neural crest. So, they have a common lineage.

The researchers first treated the pulp cells with a solution that makes them turn into the type of cells found in the cornea. Then they created a fiber scaffold shaped like a cornea and seeded the cells on it. Many steps remain before people give up a tooth to regain their sight, but this first milestone points the way and was described in a press release from the journal Stem Cells Translational Medicine, which was picked up by the web site ClinicaSpace.

CIRM funds a project that also proposes to use the patient’s own limbal stem cells but using methods more likely to gain approval of the Food and Drug Administration than those used by the Italian company.

Stem cells and the fight against obesity. Of the two types of stem cells found in your bone marrow, one can form bone and cartilage and, all too often, fat. Preventing these stem cells from maturing into fat may be a tool in the fight against obesity according to a team at Queen Mary University of London.

The conversion of stem cells to fat seems to involve the cilia, or hair-like projections found on cells. When the cilia lengthen the stem cells progress toward becoming fat. But if the researchers genetically prevented that lengthening, they stopped the conversion to fat cells. The findings opens several different ways to think about understanding and curbing obesity says Melis Dalbay one of the authors of the study in a university press release picked up by ScienceNewsline.

“This is the first time that it has been shown that subtle changes in primary cilia structure can influence the differentiation of stem cells into fat. Since primary cilia length can be influenced by various factors including pharmaceuticals, inflammation and even mechanical forces, this study provides new insight into the regulation of fat cell formation and obesity.”

Stem cell stories that caught our eye: new ways to reprogram, shifting attitudes on tissue donation, and hockey legend’s miracle questioned

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Insulin-producing cells produced from skin. Starting with human skin cells a team at the University of Iowa has created iPS-type stem cells through genetic reprogramming and matured those stem cells into insulin-producing cells that successfully brought blood-sugar levels closer to normal when transplanted in mice.

University of Iowa researchers reprogrammed human skin cells to create iPS cells, which were then differentiated in a stepwise fashion to create insulin-producing cells. When these cells were transplanted into diabetic mice, the cells secreted insulin and reduced the blood sugar levels of the mice to normal or near-normal levels. The image shows the insulin-producing cells (right) and precursor cells (left). [Credit: University of Iowa]

University of Iowa researchers reprogrammed human skin cells to create iPS cells, which were then differentiated in a stepwise fashion to create insulin-producing cells. When these cells were transplanted into diabetic mice, the cells secreted insulin and reduced the blood sugar levels of the mice to normal or near-normal levels. The image shows the insulin-producing cells (right) and precursor cells (left).
[Credit: University of Iowa]

The cells did not completely restore blood-sugar levels to normal, but did point to the possibility of achieving that goal in the future, something the team leader Nicholas Zavazava noted in an article in the Des Moines Register, calling the work an “encouraging first step” toward a potential cure for diabetes.

The Register discussed the possibility of making personalized cells that match the genetics of the patient and avoiding the need for immune suppression. This has long been a goal with iPS cells, but increasingly the research community has turned to looking for options that would avoid immune rejection with donor cells that could be off-the-shelf and less expensive than making new cells for each patient.

Heart cells from reprogramming work in mice. Like several other teams, a group in Japan created beating heart cells from iPS-type stem cells. But they went the additional step of growing them into sheets of heart muscle that when transplanted into mice integrated into the animals own heart and beat to the same rhythm.

The team published the work in Cell Transplantation and the news agency AlianzaNews ran a story noting that it has previously been unclear if these cells would get in sync with the host heart muscle. The result provides hope this could be a route to repair hearts damaged by heart attack.

Patient attitudes on donating tissue. A University of Michigan study suggests most folks don’t care how you use body tissue they donate for research if you ask them about research generically. But their attitudes change when you ask about specific research, with positive responses increasing for only one type of research: stem cell research.

On the generic question, 69 percent said go for it, but when you mentioned the possibility of abortion research more than half said no and if told the cells might lead to commercial products 45 percent said nix. The team published their work in the Journal of the American Medical Association and HealthCanal picked up the university’s press release that quoted the lead researcher, Tom Tomlinson, on why paying attention to donor preference is so critical:

“Biobanks are becoming more and more important to health research, so it’s important to understand these concerns and how transparent these facilities need to be in the research they support.”

CIRM has begun building a bank of iPS-type stem cells made from tissue donated by people with one of 11 diseases. We went through a very detailed process to develop uniform informed consent forms to make sure the donors for our cell bank knew exactly how their cells could be used. Read more about the consent process here.

Mainstream media start to question hockey legend’s miracle. Finally some healthy skepticism has arrived. Hockey legend Gordie Howe’s recovery from a pair of strokes just before the holidays was treated by the general media as a true Christmas miracle. The scientific press tried to layer the coverage with some questions of what we don’t know about his case but not the mainstream media. The one exception I saw was Brad Fikes in the San Diego Union Tribune who had to rely on a couple of scientists who were openly speaking out at the time. We wrote about their concerns then as well.

Now two major outlets have raised questions in long pieces back-to-back yesterday and this morning. The Star in hockey-crazed Canada wrote the first piece and New York Magazine wrote today’s. Both raise serious questions about whether stem cells could have been the cause of Howe’s recovery and are valuable additions to the coverage.

UC Davis Surgeons Begin Clinical Trial that Tests New Way to Deliver Stem Cells; Heal Bone Fractures

Each year, approximately 8.9 million people worldwide will suffer a bone fracture. Many of these fractures heal with the help of traditional methods, but for some, the road to recovery is far more difficult.

shutterstock_243407335

After exhausting traditional treatments—such as surgically implanted pins or plates, bed rest and injections to spur bone growth—these patients can undergo a special type of stem cell transplant that directs stem cells extracted from the bone marrow to the fracture site to speed healing.

This procedure has its drawbacks, however. For example, the act of extracting cells from one’s own bone marrow and then injecting them into the fracture site requires two very painful surgical procedures: one to extract the cells, and another to implant them. Recovery times for each procedure, especially in older patients, can be significant.

Enter a team of surgeons at UC Davis. Who last week announced a ‘proof-of-concept’ clinical trial to test a device that can extract and isolate stem cells far more efficiently than before—and allow surgeons to implant the cells into the fracture in just a single surgery.

As described in HealthCanal, he procedure makes use of a reamer-irrigator-aspirator system, or RIA, that normally processes wastewater during bone drilling surgery. As its name implies, this wastewater was thought to be useless. But recent research has revealed that it is chock-full of stem cells.

The problem was that the stem cells were so diluted within the wastewater that they couldn’t be used. Luckily, a device recently developed by Sacramento-based SynGen, Inc., was able to quickly and efficiently extract the cells in high-enough concentrations to then be implanted into the patient. Instead of having to undergo two procedures—the patient now only has to undergo one.

“The device’s small size and rapid capabilities allow autologous stem cell transplantation to take place during a single operation in the operation room rather than requiring two procedures separated over a period of weeks,” said UC Davis surgeon Mark Lee, who is leading the clinical trial. “This is a dramatic difference that promises to make a real impact on healing and patient recovery.”

Hear more from Lee about how stem cells can be used to heal bone fractures in our 2012 Spotlight on Disease.