Meeting designed to bring together investors and researchers seemed to hit pay dirt this year

When I helped plan the first Partnering Forum at the Stem Cell Meeting on the Mesa four years ago, I must admit it felt a bit early for the stated goal of the meeting, which was to bring together academic research teams and early stage biotech companies with big pharmaceutical companies and other investors who could help take the therapies to the patients. The air of the resulting meeting was excitement moderated by caution and a healthy dose of skepticism.

This year’s even that ended yesterday felt very different. First it grew from a couple hundred to more than 700. It followed a period that saw a series of major investments in the field. One speaker noted that in the previous 12 months, $2.5 billion had been invested in cell and gene therapies, double the amount of the prior 12 months. At one panel discussion, a venture capital executive announced that his company was ready to invest in one of our grantees. He had seen them present their research in prior years and their project was not ready then, but it is now.

A panel on regulatory hurdles to advancing cell therapies, including CIRM senior VP Ellen Feigal (second from left) talked about the need for the community to share information.

A panel on regulatory hurdles to advancing cell therapies, including CIRM senior VP Ellen Feigal (second from left) talked about the need for the community to share information.

Many speakers still called for caution, but at a different level. Several companies are expected to report results from Phase 3 clinical trials—the large late stage trials that decide if a therapy is ready for marketing—and they noted that the industry needs good results from some of those trials. A frequent refrain voiced the need for clear data on clinical outcome that makes it easy to show a superior benefit for patients compared to what’s available today.

Our President and CEO Randal Mills led off the second day of the event with a discussion of the restructuring of our grant making process that he refers to as “CIRM 2.0.” His goal is to cut the time from eligibility to submit a grant to the time it is awarded from the current average of 22 months to just 81 days. The concept created an immediate buzz in the room that lasted through lunch three hours later.

But as Randy likes to say, “It is all about the patients.” He noted in his presentation that in his prior position, working on a stem cell therapy for pediatric Graft Versus Host Disease—a horrible deadly complication that strikes half of kids getting bone marrow transplants for cancer—that extra 20 months equals another 750 dying kids.

Everyone here seemed to be in sync on reducing the time to develop therapies. If someone produced a word map of the event, “accelerate” would be large and near the middle as one of the most spoken words.

Don Gibbons

Seventh annual Stem Cell Awareness Day, Oct. 8, will share some of the reasons behind the hope

When we organized the first Stem Cell Awareness Day in 2008 it was a small affair with events in Australia, Canada and a couple venues in California. It has quickly grown to become a sufficiently grass roots event worldwide that we can’t capture all the activities. But we feature 10 events in the US and six international events at our web site stemcellday.com.

Last year's Stem Cell Day event at the Sanford Consortium in San Diego drew a full house.

Last year’s Stem Cell Day event at the Sanford Consortium in San Diego drew a full house.

One entry in particular is truly international: the opening of a science museum exhibit “Super Cells” in Canada before it embarks on a five-year tour across North America, the United Kingdom, and potentially Europe as well. We wrote about the exhibit that CIRM helped to develop last week.

One event that fully embraces the spirit of the day this year will be at the annual Stem Cell Meeting on the Mesa in La Jolla, California. All the various players in the field, researchers, industry executives and investors come together at this annual gather on the famous La Jolla mesa to foster partnerships that can accelerate the movement of discoveries into therapies for patients. These international leaders will be joined by the public at an event on the second night of the meeting. The featured speaker will be Carl June, a real star of one of the field’s breakthrough therapies: using genes to modify cells to treat cancer and HIV.

In California, CIRM-funded institutions in San Diego, Irvine, Los Angeles, Berkeley and Sacramento will be hosting lab tours, seminars and other events for the public. We will also be matching CIRM grantees with high schools up and down the state to offer guests talks on stem cell science. We expect to reach at least 50 classes and more than a thousand students. Similar efforts are taking place in Toronto, Canada and in New York State.

Many of the activities today and throughout the month—we consider all of October a time to share stem cell knowledge—are focused on the general public. A list of those we are aware of can be found on the Stem Cell Awareness Day website.
If you can’t make one of these events but want to discover more about stem cells, here are a few of our best resources:
stem cell basics
Disease fact sheets
A list of our therapies in development

This year attendees at all the events are likely to hear much more than in previous years about potential therapies that have made it through the pipeline and are now being tested (or close to being tested) in patients. The promise and hope of stem cell science is starting to be backed up by data.

Don Gibbons

See You Next Week: 2014 Stem Cell Meeting on the Mesa

Next week marks the fourth annual Stem Cell Meeting on the Mesa (SCMOM) Partnering Forum in La Jolla, California and CIRM , one of the main organizers, hopes to see you there.

SCMOM

SCMOM is the first and only meeting organized specifically for the regenerative medicine and cell therapy sectors. The meeting’s unique Partnering Forum brings together a network of companies—including large pharma, investors, research institutes, government agencies and philanthropies seeking opportunities to expand key relationships in the field. The meeting will feature presentations by 50 leading companies in the fields of cell therapy, gene therapy and tissue engineering.

Co-founded by CIRM and the Alliance for Regenerative Medicine (ARM), SCMOM has since grown both in participants and in quality. As Geoff MacKay, President and CEO of Organogenesis, Inc. and ARM’s Chairman, stated in a recent news release:

“This year the Partnering Forum has expanded to include an emphasis not only on cell therapies, but also gene and gene-modified cell therapy technologies. This, like the recent formation of ARM’s Gene Therapy Section, is a natural progression for the meeting as the advanced therapies sector expands.”

This year CIRM President and CEO Dr. C. Randal Mills, as well as Senior Vice President, Research & Development Dr. Ellen Feigal will be speaking to attendees. In addition, 12 CIRM grantees will be among the distinguished speakers, including Drs. Jill Helms, Don Kohn and Clive Svendsen, as well as leaders from Capricor, Asterias, ViaCyte, Sangamo Biosciences and others.

CIRM has made tremendous progress advancing stem cell therapies to patients and expects to have ten approved clinical trials by the end of 2014. The trials which span a variety of therapeutic areas using several therapeutic strategies such as cell therapy, monoclonal antibodies and small molecules are increasingly being partnered with major industry players. CIRM still has more than $1 billion to invest and is interested in co-funding with industry and investors—don’t miss the chance to strike the next partnership at SCMOM next week.

For more details and to view the agenda, please visit: http://stemcellmeetingonthemesa.com/

CIRM at Business of Personalized Medicine Summit

Exciting new technologies such as regenerative medicine, tissue engineering and gene therapy are already at the forefront of a new era of medicine. And today, CIRM’s own Business Development Officer, Neil Littman, moderated a panel titled The Impact of Next Generation Personalized Medicine Technologies: How Disruptive Tech Continues to Advance the Industry, at the annual Business of Personalized Medicine Summit.

BPMS Logo2014

The panel discussed the innovative technologies we have at our disposal today, and provided a glimpse into the future—highlighting promising therapies already in the clinic as well as technologies that may be available in 5 to 10 years. For example, Curt Herberts, Senior Director of Corporate Development & Strategy from Sangamo BioSciences, discussed Sangamo’s grant under CIRM’s Strategic Partnership II Award, which uses genome-editing technology for a one-time treatment for the blood disorder Beta-thalassemia.

Importantly, the panel delved into potential paradigm shifts in medical care that may arise as a result of these new technologies, and discussed how to translate these cutting-edge technologies into human clinical trials. Carlos Olguin, Head of Bio/nano/Programmable Matter Group, Autodesk and Dr. Kumar Sharma, who directs the Center for Renal Translational Medicine University of California, San Diego La Jolla, rounded out the panel.

Finally, Neil asked panel members to discuss the issues surrounding market adoption and the potential resistance to paradigm-shifting technologies, the final hurdle in the delivery of much-needed therapies to patients.

Stem Cell Stories that Caught our Eye: A Zebrafish’s Stripes, Stem Cell Sound Waves and the Dangers of Stem Cell Tourism

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

The zebrafish (Danio rerio) owes its name to a repeating pattern of blue stripes alternating with golden stripes. [Credit: MPI f. Developmental Biology/ P. Malhawar]

The zebrafish (Danio rerio) owes its name to a repeating pattern of blue stripes alternating with golden stripes. [Credit: MPI f. Developmental Biology/ P. Malhawar]

How the Zebrafish Got its Stripes. Scientists in Germany have identified the different pigment cells that emerge during embryonic development and that determine the signature-striped pattern on the skins of zebrafish—one of science’s most commonly studied model organisms. These results, published this week in the journal Science, will help researchers understand how patterns, from stripes to spots to everything in between, develop.

In the study, scientists at the Max Planck Institute for Developmental Biology mapped how three distinct pigment cells, called black cells, reflective silvery cells, and yellow cells emerge during development and arrange themselves into the characteristic stripes. While researchers knew these three cell types were involved in stripe formation, what they discovered here was that these cells form when the zebrafish is a mere embryo.

“We were surprised to observe such cell behaviors, as these were totally unexpected from what we knew about color pattern formation”, says Prateek Mahalwar, first author of the study, in a news release.

What most surprised the research team, according to the news release, was that the three cell types each travel across the embryo to form the skin from a different direction. According to Dr. Christiane Nüsslein-Volhard, the study’s senior author:

“These findings inform our way of thinking about color pattern formation in other fish, but also in animals which are not accessible to direct observation during development such as peacocks, tigers and zebras.”

Sound Waves Dispense Individual Stem Cells. It happens all the time in the lab: scientists need to isolate and study a single stem cell. The trick is, how best to do it. Many methods have been developed to achieve this goal, but now scientists at the Regenerative Medicine Institute (REMEDI) at NUI Galway and Irish start-up Poly-Pico Technologies Ltd. have pioneered the idea of using sound waves to isolate living stem cells, in this case from bone marrow, with what they call the Poly-Pico micro-drop dispensing device.

Poly-Pico Technologies Ltd., a start-up that was spun out from the University of Limerick in Ireland, has developed a device that uses sound energy to accurately dispense protein, antibodies and DNA at very low volumes. In this study, REMEDI scientists harnessed this same technology to dispense stem cells.

These results, while preliminary, could help improve our understanding of stem cell biology, as well as a number of additional applications. As Poly-Pico CEO Alan Crean commented in a news release:

“We are delighted to see this new technology opportunity emerge at the interface between biology and engineering. There are other exciting applications of Poly-Pico’s unique technology in, for example, drug screening and DNA amplification. Our objective here is to make our technology available to companies, and researchers, and add value to what they are doing. This is one example of such a success.”

The Dangers of Stem Cell Toursim. Finally, a story from ABC News Australia, in which they recount a woman’s terrifying encounter with an unproven stem cell technique.

In this story, Annie Levington, who has suffered from multiple scleoris (MS) since 2007, tells of her journey from Melbourne to Germany. She describes a frightening experience in which she paid $15,000 to have a stem cell transplant. But when she returned home to Australia, she saw no improvement in her MS—a neuroinflammatory disease that causes nerve cells to whither.

“They said I would feel the effects within the next three weeks to a year. And nothing – I had noticed nothing whatsoever. [My neurologist] sent me to a hematologist who checked my bloods and concluded there was no evidence whatsoever that I received a stem cell transplant.”

Sadly, Levington’s story is not unusual, though it is not as dreadful as other instances, in which patients have traveled thousands of miles to have treatments that not only don’t cure they condition—they actually cause deadly harm.

The reason that these unproven techniques are even being administered is based on a medical loophole that allows doctors to treat patients, both in Australia and overseas, with their own stem cells—even if that treatment is unsafe or unproven.

And while there have been some extreme cases of death or severe injury because of these treatments, experts warn that the most likely outcome of these untested treatments is similar to Levington’s—your health won’t improve, but your bank account will have dwindled.

Want to learn more about the dangers of stem cell tourism? Check out our Stem Cell Tourism Fact Sheet.

FDA gives Asterias green light to start CIRM-funded clinical trial in spinal cord injury

This morning Asterias Biotherapeutics announced that they have been cleared by the Food and Drug Administration (FDA) to start a clinical trial using stem cells to treat spinal cord injury. It’s great news, doubly so as we are funding that trial.

1773071

You can read more about the trial in a news release we just sent out.

This trial is a follow-on to the Geron trial that we funded back in 2010 that was halted after 5 patients, not because of any safety concerns but because of a change in Geron’s business strategy.

Katie Sharify was the fifth and final patient enrolled in that trial and treated with the stem cells. Like all of us she was disappointed when the trial was halted. And like all of us she is delighted that Asterias is now taking that work and building on it.

Here’s what Katie had to say when she heard the news:

“Of course, I’m very happy that the trial has been revived. Knowing that the FDA approved the continuation based on the safety data I was a part of is great news. As you know, the trial was halted 2 days before I received the stem cells. A big part of why I ended up participating was because I figured that once the study is revived a bigger sample size (even if just by 1 person) was more valuable than a smaller one. I never regretted my choice to participate but I have doubted whether my contribution actually meant anything. I think now I finally feel a sense of accomplishment because the trial is not only being continued but also progressing in the right direction as a higher dose is going to be used. A lot remains unknown about human embryonic stem cells and that’s exactly why this research is so important. The scientific community is going to have a much greater understanding of these stem cells from the data that will be collected throughout the study and I’m glad to have been a part of this advancement.”

World’s largest pharmaceutical company signs deal with ViaCyte supporting stem cell therapy for type 1 diabetes

It’s been a good week for ViaCyte, a good week for us here at the stem cell agency and potentially a great week for people with type 1 diabetes.

Earlier this week ViaCyte announced they have been given approval to start a clinical trial for their new approach to treating type 1 diabetes. Then today they announced that they have signed an agreement with Janssen Research & Development LLC and its affiliated investment fund, Johnson & Johnson Development Corporation (JJDC).

ViaCyte's President & CEO, Paul Laikind

ViaCyte’s President & CEO, Paul Laikind

Under this new agreement Janssen and JJDC will provide ViaCyte with $20 million with a future right to consider a longer-term transaction related to the product candidate that ViaCyte is developing for type 1 diabetes.

The agreement is a big deal because Janssen is a division of Johnson & Johnson, which just happens to be the largest pharmaceutical company in the world (they were also ranked the world’s most respected company by Barron’s Magazine in 2008, not a bad reputation to have). Companies like this have traditionally been shy about jumping into the stem cell arena, as they wanted to be sure that they had a good chance to see a return on any investment they made. Not surprising really. You don’t get to be as successful as they are by throwing your money away.

The fact that they have decided that ViaCyte is a good investment reflects on the quality of the company, the years of hard work the people at ViaCyte have put in developing their therapy, and the impressive pre-clinical evidence that it works. It also reflects the fact that we helped fund the project, investing almost $40 million in the program, and get it to this point

In a news release we issued about the announcement our President and CEO, C. Randal Mills, said:

“This is excellent news as it demonstrates that pharmaceutical companies are recognizing stem cell therapies hold tremendous promise and need to be part of their development portfolio,” says C. Randal Mills, Ph.D., President and CEO of the stem cell agency. “This kind of serious financial commitment from industry is vital in helping get promising therapies like this through all the phases of clinical trials and, most importantly, to the patients in need.”

What’s nice is that this is not just a one-off deal. This is the third time this year that a large company has stepped in to make a deal with a company that we are funding.

In January Capricor Therapeutics signed a deal with Janssen Biotech that could ultimately be worth almost $340 million for its work using stem cells to treat people who have had a heart attack. The same month Sangamo, who we are funding to develop a treatment for beta-thalassemia, signed a potential $320 million agreement with Biogen Idec.

As Randy Mills said:

“Our goal at CIRM is to do everything we can to accelerate the development of successful therapies for people in need,” says Mills. “These kinds of agreements and investments help us do that, not only by adding an extra layer of funding for development, but also by validating the scientific and commercial potential of regenerative medicine.”

It’s great news for ViaCyte. It’s confirmation for us that we have been investing our money well in a promising therapy. But most of all it’s encouraging for anyone with type 1 diabetes, giving them a sense of hope that a new treatment could be on the horizon.

First of its kind stem cell production facility sets its sights on deadly childhood disease

We are used to hearing about immune suppression when transplanting organs or cells from one person to another. It’s a necessary step in preventing the body from attacking the transplanted material. Now Children’s Hospital of Orange County (CHOC) has just unveiled its newest tool to treat rare childhood diseases. Instead of focusing on immune suppression this focuses on immune-matching.

CHOC's new stem cell production facility

CHOC’s new stem cell production facility

CHOC has opened up a new stem cell production facility. It’s funded by CIRM and it’s a state-of-the-art mini clean room/manufacturing facility that will allow researchers to produce patient-specific cells for future immune-matching therapies.

“We are excited. We’ve been planning this for at least five years,” says Philip Schwartz, Ph.D., senior scientist at the CHOC Children’s Research Institute and managing director of the National Human Neural Stem Cell Resource.

“The major thing is that the footprint is much smaller than a traditional stem cell manufacturing facility, it’s all housed in one room so that keeps the cost down. The device we use to reproduce the cells is also much smaller so this set up doesn’t require multiple rooms and complex pass-throughs as you move from one room to another. All that meant the cost was only around $500,000 which is many times smaller than the more conventional facility.”

Dr. Schwartz is wasting little time putting the new facility to work. It’s already up and running and culturing cells for his work in developing a treatment for mucopolysaccharidosis (MPS-1), a rare neurodegenerative disease that usually kills children before the age of 10.

He is working on a kind of 1-2 punch approach to the disease. Using donated umbilical cord blood to help replace the child’s damaged immune system and then turning some of those blood stem cells into neural cells, the kind damaged by MPS-1, and transplanting those into the brain to repair and prevent further damage.

“This is a really interesting approach. Bone marrow transplants treat a neck down disease. Brain transplants treat a neck up disease. But conditions like MPS-1 are system wide and need both a neck down and neck up approach. Our approach could help combine those and because the cells are carefully matched also mean they won’t need to be on immune-suppressant therapy for life.”

Dr. Schwartz says animal studies using this two pronged approach have been very encouraging but he cautions there is still a lot of work to do before it would be ready for a clinical trial in people. However, if this approach is effective then it could be useful for more than just MPS-1:

“I have a high level of confidence that this will work and if it does work then we can use it in other conditions as well, such as Multiple Sclerosis. Some clinical studies show that MS patients with leukemia who got a bone marrow transplant also saw a decrease in their MS symptoms.”

Kevin McCormack

Putting the promise to the test: a new move to see if stem cell therapies can help injured athletes

One of the toughest questions we get asked, and we get asked this a lot, is a variation on the theme of “I have xxxx disease and want to know where I can get a stem cell therapy for it?” All too often, in fact pretty much all the time, we have to explain that there aren’t any therapies available, at least not yet, and that it might be a couple of years before any of the really promising projects we are funding are enrolling patients in a clinical trial.

Injured knee

But still the questions come in, fueled in part by all the clinics and centers out there claiming they can treat everything from rheumatoid arthritis to type 2 diabetes and Crohn’s disease. The biggest problem of course is that very few, if any, of these centers and physicians back up their claims with any evidence or studies to show that their treatments work. They have patient testimonials plastered all over their websites. They have lots of very reassuring sounding information, but no evidence or proof that anything they are doing will work.

Fortunately there are a growing number of researchers and reporters holding these clinics up to the light to see if what they are claiming could be true. In most cases the answer is a resounding “heck no.”

Just a week ago we told you about a couple of recent reports that looked at all the claims about using stem cells to treat sports injuries and whether there is anything to support claims by some cosmetic practitioners that they can use stem cell-based therapies to reverse the aging process (spoiler alert – there isn’t, otherwise I’d be first in line to try them out).

Cover of article about stem cells in Muscle and Medicine

Cover of article about stem cells in Muscle and Medicine

But now some mainstream media reporters are taking a closer look at claims these therapies are effective, particularly those associated with top-flight athletes. A recent issue of Muscle and Medicine – an online website that is part of the Sports Illustrated stable of publications – carried a really in-depth and thoughtful look at the use of stem cells to treat superstar athletes.

Writer Jenny Vrentas sets the tone in the opening paragraph saying:

“It may be the next big breakthrough in the treatment of sports ailments, but for now the use of such therapy is strictly limited in the U.S. – and questions about effectiveness outweigh the answers.”

Vrentas carries that questioning attitude throughout, highlighting some of the athletes who talk openly about procedures (we can’t really call them “treatments” because we don’t know if they actually treat anything) but also profiling orthopedic surgeon, James Andrews, who is a proponent of stem cells and is trying to do the kind of study necessary to see if these therapies work or not:

Andrews speaks carefully about the potential of stem-cell treatments. He’s hyper-aware of the danger of sensationalizing among his clientele of elite athletes, particularly since many questions remain—not the least of which is how well the treatments actually work. But the early returns have motivated him, as has seeing his top patients go abroad for therapy: “They don’t really know what they are getting,” he says. “Are they getting illegal stuff? We don’t have any control over it, so it’s something we needed to bring back and do in a controlled environment here.”

It’s an excellent example of the kind of reporting that can really help people, weekend warriors or anyone else, who are wondering whether stem cells might help them. It highlights the promise, but also underlines the fact that we need proof to back up that promise before it’s ready for prime time.

kevin mccormack 

Stem Cell Agency Funded Treatment for Type 1 Diabetes Takes a Big Step towards Clinical Trials

Even the best ideas can fail without a lot of support. One of the things we pride ourselves on at the Stem Cell Agency is nurturing really promising ideas for new therapies through sustained funding, giving them the support they need to turn that promise into reality. So it’s very gratifying today to hear that one project we have supported for many years, ViaCyte’s VC-01™ implantable device for treating type 1 diabetes, just took a big step towards being tested in patients.

ViaCyte has submitted what’s called an Investigational New Drug application (“IND”) with the Food and Drug Administration (FDA) asking permission to start a phase 1/2 clinical trial in patients. If the FDA says yes then ViaCyte hopes to start testing their device in patients before the end of the year.

We have invested almost $40 million in nurturing the project through the early, most basic research to see if this approach could be made to work, and then through more rigorous advanced research and testing in animals to make sure it’s safe and that it is effective.

As our Chairman, Jonathan Thomas, says in a press release we sent out announcing the news:

“We have been strong supporters of Viacyte for many years and it’s great to see that they are well on the way to starting a First-in-Human trial, hopefully in the next few months. This therapy’s growth from an idea to a potential treatment highlights CIRM’s commitment to following promising science at all stages of development.”

The device is really quite ingenious. It is a thin plastic pouch that contains an immature form of pancreatic cells. When the device is implanted under the skin these cells become the different kinds of cells needed to regulate blood glucose levels. They are able to sense when blood glucose is high, and then secrete insulin to restore it to a healthy level. The truly impressive part is that the device has holes large enough to allow insulin to be pushed out, but too small to allow the body’s own immune system to get in and attack the device.

The goal of the first phase of this clinical trial, as with all phase 1 trials, is simply to show that the VC-01™ is safe. The second phase will also look at safety but also test it to see if it is helping patients, reducing their dependence on injected insulin. If the results from both those phases are encouraging, the next step is to test it in much larger numbers of patients to see just how effective it is.

But this first step, submitting an application to the FDA, is the starting point for all that. As our President and CEO C. Randal Mills said in our news release, getting to the starting line is often half the battle:

“This is good news for ViaCyte and is an encouraging sign of the progress they are making. Filing for an IND is a crucial step along the path to making a therapy available to patients and we’ll be working with them and supporting them every step of the way to try and make this happen as quickly, and as safely, as possible.”

You can read more about ViaCyte and our support for them on our website.