Seeing is believing: using video to explain stem cell science

People are visual creatures. So it’s no surprise that many of us learn best through visual means. In fact a study by the Social Science Research Network found that 65 percent of us are visual learners.

That’s why videos are such useful tools in teaching and learning, and that’s why when we came across a new video series called “Reaping the rewards of stem cell research” we were pretty excited. And to be honest there’s an element of self-interest here. The series focuses on letting people know all about the research funded by CIRM.

We didn’t make the videos, a group called Youreka Science is behind them. Nor did we pay for them. That was done by a group called Americans for Cures (the group is headed by Bob Klein who was the driving force behind Proposition 71, the voter-approved initiative that created the stem cell agency). Nonetheless we are happy to help spread the word about them.

The videos are wonderfully simple, involving just an engaging voice, a smart script and some creative artwork on a white board. In this first video they focus on our work in helping fund stem cell therapies for type 1 diabetes.

What is so impressive about the video is its ability to take complex ideas and make them easily understandable. On their website Youreka Science says they have a number of hopes for the videos they produce:

“How empowering would it be for patients to better understand the underlying biology of their disease and learn how new treatments work to fight their illness?

How enlightening would it be for citizens to be part of the discovery process and see their tax dollars at work from the beginning?

How rewarding would it be for scientists to see their research understood and appreciated by the very people that support their work?”

What I love about Youreka Science is that it began almost by chance. A PhD student at the University of California San Francisco was teaching some 5th graders about science and thought it would be really cool to have a way of bringing the textbook to life. So she did. And now we all get to benefit from this delightful approach.

Funding a clinical trial for deadly cancer is a no brainer

The beast of cancers
For a disease that is supposedly quite rare, glioblastoma seems to be awfully common. I have lost two friends to the deadly brain cancer in the last few years. Talking to colleagues and friends here at CIRM, it’s hard to find anyone who doesn’t know someone who has died of it.


Imagery of glioblastoma, a deadly brain cancer,  from ImmunoCellular’s website

So when we got an application to fund a Phase 3 clinical trial to target the cancer stem cells that help fuel glioblastoma, it was really a no brainer to say yes. Of course it helped that the scientific reviewers – our Grants Working Group or GWG – who looked at the application voted unanimously to approve it. For them, it was great science for an important cause.

Today our Board agreed with the GWG and voted to award $19.9 million to LA-based ImmunoCellular Therapeutics to carry out a clinical trial that targets glioblastoma cancer stem cells. They’re hoping to begin the trial very soon, recruiting around 400 newly diagnosed patients at some 120 clinical sites around the US, Canada and Europe.

There’s a real urgency to this work. More than 50 percent of those diagnosed with glioblastoma die within 15 months, and more than 90 percent within three years. There are no cures and no effective long-term treatments.

As our President and CEO, Dr. Randy Mills, said in a news release:

 “This kind of deadly disease is precisely why we created CIRM 2.0, our new approval process to accelerate the development of therapies for patients with unmet medical needs. People battling glioblastoma cannot afford to wait years for us to agree to fund a treatment when their survival can often be measured in just months. We wanted a process that was more responsive to the needs of patients, and that could help companies like ImmunoCellular get their potentially life-saving therapies into clinical trials as quickly as possible.”

The science
The proposed treatment involves some rather cool science. Glioblastoma stem cells can evade standard treatments like chemotherapy and cause the recurrence and growth of the tumors. The ImmunoCellular therapy addresses this issue and targets six cell surface proteins that are found on glioblastoma cancer stem cells.

The researchers take immune cells from the patient’s own immune system and expose them to fragments of these cancer stem cell surface proteins in the lab. By re-engineering the immune cells in this way they are then able to recognize the cancer stem cells.

My colleague Todd Dubnicoff likened it to letting a bloodhound sniff a piece of clothing from a burglar so it’s able to recognize the scent and hunt the burglar down.  When the newly trained immune system cells are returned to the patient’s body, they can now help “sniff out” and hopefully kill the cancer stem cells responsible for the tumor’s recurrence and growth.

Like a bloodhound picking up the scent of a burglar, ImmunoCellular's therapy helps the immune system track down brain cancer stem cells (source: wikimedia commons)

Like a bloodhound picking up the scent of a burglar, ImmunoCellular’s therapy helps the immune system track down brain cancer stem cells (source: Wikimedia Commons)

Results from both ImmunoCellular’s Phase 1 and 2 trials using this approach were encouraging, showing that patients given the therapy lived longer than those who got standard treatment and experienced only minimal side effects.

Turning the corner against glioblastoma
There’s a moment immediately after the Board votes “yes” to fund a project like this. It’s almost like a buzz, where you feel that you have just witnessed something momentous, a moment where you may have turned the corner against a deadly disease.

We have a saying at the stem cell agency: “Come to work every day as if lives depend on it, because lives depend on it.” On days like this, you feel that we’ve done something that could ultimately help save some of those lives.

Stem cell stories that caught our eye: new CRISPR fix for sickle cell disease, saving saliva stem cells, jumping genes in iPSCs and lung stem cells.

An end run around sickle cell disease with CRISPR
The CRISPR-based gene editing technique has got to be the hottest topic in biomedical research right now. And I sense we’re only at the tip of the iceberg with more applications of the technology popping up almost every week. Just two days ago, researchers at the Dana Farber Cancer Institute in Boston reported in Nature that they had identified a novel approach to correcting sickle cell disease (SCD) with CRISPR.

A mutation in the globlin gene leads to sickled red blood cells that clog up blood vessels

A mutation in the globlin gene leads to sickled red blood cells that clog up blood vessels (image: CIRM video)

Sickle cell anemia is a devastating blood disorder caused by a single, inherited DNA mutation in the adult form of the hemoglobin gene (which is responsible for making blood). A CIRM-funded team at UCLA is getting ready to start testing a therapy in clinical trials that uses a similar but different gene editing tool to correct this mutation. Rather than directly fixing the SCD mutation as the UCLA team is doing, the Dana Farber team focused on a protein called BCL11A. Acting like a molecular switch during development, BCL11A shifts hemoglobin production from a fetal to an adult form. The important point here is that the fetal form of hemoglobin can substitute for the adult form and is unaffected by the SCD mutation.

So using CRISPR gene editing, they deleted a section of DNA from a patient’s blood stem cells that reduced BCL11A and increased production of the fetal hemoglobin. This result suggests the technique can, to pardon the football expression, do an end run around the disease.

But if there’s already a recipe for directly fixing the SCD mutation, why bother with this alternate CRISPR DNA deletion method? In a press release Daniel Bauer, one of the project leaders, explains the rationale:

“It turns out that blood stem cells, the ultimate targets for this kind of therapy, are much more resistant to genetic repair than to genetic disruption.”

Whatever the case, we’re big believers in the need to have several shots on goal to help ensure a victory for patients.

Clinical trial asks: does sparing salivary stem cells protect against severe dry mouth?
I bet you rarely think about or appreciate your saliva. But many head and neck cancer patients who undergo radiation therapy develop severe dry mouth caused by damage to their salivary glands. It doesn’t sound like a big deal, but in reality, the effects of dry mouth are life-changing. A frequent need to drink water disrupts sleep and leads to chronic fatigue. And because saliva is crucial for preventing tooth decay, these patients often lose their teeth. Eating and speaking are also very difficult without saliva, which cause sufferers to retreat from society.

Help may now be on the way. On Wednesday, researchers from University of Groningen in the Netherlands reported in Science Translational Medicine the identification of stem cells in a specific region within the large salivary glands found near each ear. In animal experiments, the team showed that specifically irradiating the area where the salivary stem cells lie shuts down saliva production. And in humans, the amount of radiation to this area is linked to the severity of dry mouth symptoms.

Doctors have confirmed that focusing the radiation therapy beams can minimize exposure to the stem cell-rich regions in the salivary glands. And the research team has begun a double-blind clinical trial to see if this modified radiation treatment helps reduce the number of dry mouth sufferers. They’re looking to complete the trial in two to three years.

Keeping a Lid on Jumping Genes
Believe it or not, you have jumping genes in your cells. The scientific name for them is retrotransposons. They are segments of DNA that can literally change their location within your chromosomes.

While retrotransposons have some important benefits such as creating genetic diversity, the insertion or deletion of DNA sequences can be bad news for a cell. Such events can cause genetic mutations and chromosome instability, which can lead to an increased risk of cancer growth or cell death.

To make its jump, the DNA sequence of a retrotransposon is copied with the help of an intermediary RNA (the green object in the picture below). A special enzyme converts the RNA back into DNA and this new copy of the retrotransposon then gets inserted at a new spot in the cell’s chromosomes.

Retrotransposons: curious pieces of DNA that can be transcribed into RNA, copied into DNA, and inserted to a new spot in your chromosomes.

The duplication and insertion of transposons into our chromosomes can be bad news for a cell

Most of our cells keep this gene jumping activity in check by adding inhibitory chemical tags to the retrotransposon DNA sequence. Still, researchers have observed that in unspecialized cells, like induced pluripotent stem (iPS) cells, these inhibitory chemical tags are reduced significantly.

So you’d think that iPS cells would be prone to the negative consequences of retrotransposon reactivation and unleashed jumping genes. But in a CIRM-funded paper published on Monday in Nature Structural and Molecular Biology, UC Irvine researchers show that despite the absence of those inhibitory chemical tags, the retrotransposon activity is reduced due to the presence of microRNA (miRNA), in this case miRNA-128. This molecule binds and blocks the retrotransposon’s RNA intermediary so no duplicate jumping gene is made.

The team’s hope is that by using miRNA-128 to curb the frequency of gene jumping, they can reduce the potential for mutations and tumor growth in iPS cells, a key safety step for future iPS-based clinical trials.

Great hope for lung stem cells
Chronic lung disease is the third leading cause of death in the U.S. but sadly doctors don’t have many treatment options except for a full lung transplant, which is a very risky procedure with very limited sources of donated organs. For these reasons, there is great interest in better understanding the location and function of lung stem cells. Harnessing the regenerative abilities of these cells may lead to more alternatives for people with end stage lung disease.

In a BioMedicine Development commentary that’s geared for our scientist readers, UCSF researchers summarize the evidence for stem cell population in the lung. We’re proud to say that one of the lead authors, Matt Donne, is a former CIRM Scholar.

Related links

The Ogawa-Yamanaka Prize Crowns Its First Stem Cell Champion

A world of dark

Imagine if you woke up one day and couldn’t see. Your life would change drastically, and you would have to painfully relearn how to function in a world that heavily relies on sight.

A retina of a patient with macular degeneration. (Photo credit: Paul Parker/SPL)

A retina of a patient with macular degeneration. (Photo credit: Paul Parker/SPL)

While most people don’t lose their sight overnight, many suffer from visual impairments that slowly happen over time. Glaucoma, cataracts, and macular degeneration are examples of debilitating eye diseases that eventually lead to blindness.

With almost 300 million people world wide with some form of visual impairment, there’s urgency in the scientific community to develop safe therapies for clinical applications. One of the most promising strategies is using human induced pluripotent stem (iPS) cells derived from patients to generate cell types suitable for transplantation into the human eye.

However, this task is more easily said than done. Safety, regulatory, and economical concerns make the process of translating iPS cell therapies from the bench into the clinic an enormous challenge worthy only of a true scientific champion.

A world of light

Dr. Masayo Takahashi

Dr. Masayo Takahashi

Meet Dr. Masayo Takahashi. She is a faculty member at the RIKEN Centre for Developmental Biology, a prominent female scientist in Japan, and a bona fide stem cell champion. Her mission is to cure diseases of blindness using iPS cell technology.

Since the Nobel Prize-winning discovery of iPS cells by Dr. Shinya Yamanaka eight years ago, Dr. Takahashi has made fast work using this technology to generate specific cells from human iPS cells that can be transplanted into patients to treat an eye disease called macular degeneration. This disease results in the degeneration of the retina, an area in the back of the eye that receives light and translates the information to your brain to produce sight.

Dr. Takahashi generates cells called retinal pigment epithelial (RPE) cells from human iPS cells that can replace lost or dying retinal cells when transplanted into patients with macular degeneration. What makes this therapy so exciting is that Dr. Takahashi’s iPS-derived RPE cells appear to be relatively safe and don’t cause an immune system reaction or cause tumors when transplanted into humans.

Because of the safety of her technology, and the unfulfilled needs of millions of patients with eye diseases, Dr. Takahashi made it her goal to take iPS cells into humans within five years of Dr. Yamanaka’s discovery.

Ogawa-Yamanaka Stem Cell Prize

It’s no surprise that Dr. Takahashi succeeded in her ambitious goal. Her cutting edge work has led to the first clinical trial using iPS cells in humans, specifically treating patients with macular degeneration. In September 2014, the first patient, a 70-year-old Japanese woman, received a transplant of her own iPS-derived RPE cells and no complications were reported.

Currently, the trial is on hold “as part of a safety validation step and in consideration of anticipated regulatory changes to iPS cell research in Japan” according to a Gladstone Institute news release. Nevertheless, this first iPS cell trial in humans has overcome significant regulatory hurdles, has set an important precedent for establishing the safety of stem cell therapies, and has given scientists hope that iPS cell therapies can become a reality.

Dr. Deepak Srivastava presents Dr. Takahashi with the Ogawa-Yamanaka Prize.

Dr. Deepak Srivastava presents Dr. Takahashi with the Ogawa-Yamanaka Prize.

For her accomplishments, Dr. Takahashi was recently awarded the first ever Ogawa-Yamanaka Stem Cell Prize and honored at a special event held at the Gladstone Institutes in San Francisco yesterday. This prize was established by a generous gift from Mr. Hiro Ogawa in collaboration with Dr. Shinya Yamanaka and Dr. Deepak Srivastava at the Gladstone Institutes. The award recognizes scientists who conduct translational iPS cell research that will eventually be applied to patients in the clinic.

In an interview with CIRM, Dr. Deepak Srivastava, the Director of the Gladstone Institute of Cardiovascular Disease and the Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, described the prestigious prize and the ceremony held at the Gladstone to honor Dr. Takahashi:

Dr. Deepak Srivastava

The Ogawa-Yamanaka prize prize is meant to incentivize and honor those whose work is advancing the translational use of stem cells for regenerative medicine. Dr. Masayo Takahashi is a pioneer in pushing the technology of iPS cell-derived cell types and actually introducing them into people. She’s the very first person in the world to successfully overcome all the regulatory barriers and the scientific barriers to introduce this new type of stem cell into a patient. And she’s done so for a condition of blindness called macular degeneration, which affects millions of people world wide, and for which there are very few treatments currently. We are honoring her with this prize for her pioneering efforts at making this technology one that can be applied to patients.

The new world that iPS cells will bring

As part of the ceremony, Dr. Takahashi gave a scientific talk on the new world that iPS cells will bring for patients with diseases that lack cures, including those with visual impairments. The Stem Cellar team was lucky enough to interview Dr. Takahashi as well as attend her lecture during the Gladstone ceremony. We will cover both her talk and her interview with CIRM in an upcoming blog.

The Stem Cellar team at CIRM was excited to attend this momentous occasion, and to know that CIRM-funding has supported many researchers in the field of iPS cell therapy and regenerative medicine. We would like to congratulate Dr. Takahashi on her impressive and impactful accomplishments in this area and look forward to seeing progress in iPS cell trial for macular degeneration.


Related Links:

CIRM-funded team traces molecular basis for differences between human and chimp face

So similar yet so different
Whenever I go to the zoo, I could easily spend my entire visit hanging out with our not-so-distant relatives, the chimpanzees. To say we humans are similar to them is quite an understatement. Sharing 96% of our DNA, chimps are more closely related to us than they are to gorillas. And when you just compare our genes – that is, the segments of DNA that contain instructions for making proteins – we’re even more indistinguishable.

Chimps and Humans: So similar yet so different

Chimps and Humans: So similar yet so different

And yet you wouldn’t mistake a human for a chimp. I mean, I do have hairy arms, but they’re not that hairy. So what accounts for our very different appearance if our genes are so similar?

To seek out answers, a CIRM-funded team at Stanford University used both human and chimp induced pluripotent stem cells (iPSCs) to derive cranial neural crest cells (CNCCs). This cell type plays a key role in shaping the overall structure of the face during the early stages of embryo development. In a report published late last week in Cell, the team found differences, not in the genes themselves, but in gene activity between the human and chimp CNCCs.

Enhancers: Volume controls for your genes
Pinpointing the differences in gene activity relied on a comparative analysis of so-called enhancer regions of human and chimp DNA. Unlike genes, the enhancer regions of DNA do not provide instructions for making proteins. Instead they dictate how much protein to make by acting like volume control knobs for specific genes. A particular volume level, or gene activity, is determined by specific combinations of chemical tags and DNA-binding proteins on an enhancer region of DNA.

Enhancers: DNA segments that act like a volume control know for gene activity (Image source: xxxx)

Enhancers: DNA segments that act like a volume control knobs for gene activity (Image source: FANTOM Project, University of Copenhagen)

The researchers used several sophisticated lab techniques to capture a snapshot of this enhancer tagging and binding in the CNCCSs. They mostly saw similarities between human and chimp enhancers but, as senior author Joanna Wysocka explains in a Stanford University press release, they did uncover some differences:

“In particular, we found about 1,000 enhancer regions that are what we termed species-biased, meaning they are more active in one species or the other. Interestingly, many of the genes with species-biased enhancers and expression have been previously shown to be important in craniofacial development.”

PAX Humana: A genetic basis for our smaller jawline and snout?
For example, their analysis revealed that the genes PAX3 and PAX7 are associated with chimp-biased enhancer regions, and they had higher levels of activity in chimp CNCCs. These results get really intriguing once you learn a bit more about the PAX genes: other studies in mice have shown that mutations interfering with PAX function lead to mice with smaller, lower jawbones and snouts. So the lower level of PAX3/PAX7 gene activity in humans would appear to correlate with our smaller jaws and snout (mouth and nose) compared to chimps. Did that just blow your mind? How about this:

The researchers also found a variation in the enhancer region for the gene BMP4. But in this case, BMP4 was highly related to human-biased enhancer regions and had higher activity in humans compared to chimps. Previous mouse studies have shown that forcing higher levels of BMP4 specifically in CNCCs leads to shorter lower and upper jawbones, rounder skulls, and eyes positioned more to the front of the face. These changes caused by BMP4 sound an awful lot like the differences in human and chimp facial structures. It appears the Stanford group has established a terrific strategy for tracing the genetic basis for differences in humans and chimps.

So what’s next? According to Wysocka, the team is digging deeper into their data:

“We are now following up on some of these more interesting species-biased enhancers to better understand how they impact morphological differences. It’s becoming clear that these cellular pathways can be used in many ways to affect facial shape.”

And in the bigger picture, the researchers also suggest that this “cellular anthropology” approach could also be applied to a human to human search for DNA enhancer regions that play a role in the variation between healthy and disease states.

CIRM CAP Kickoff to New Clinical Trials

Alisha Bouge is the project manager for CIRM’s Clinical Advisory Panels (CAPs)

On the cusp of the official kickoff to football season, CIRM has had its own kickoff to celebrate.  The first Clinical Advisory Panel (CAP) meeting took place on August 18, 2015 in Irvine, CA with Caladrius Bioscience, Inc.  And just as every NFL team starts the season hopeful of a Super Bowl win, all our CAPs start out with equally lofty goals. That’s because under CIRM 2.0, the role of the CAP is to work with the clinical stage project teams we fund to help accelerate the development of therapies for patients with unmet medical needs and to give these projects the greatest likelihood of success.

In the case of Caladrius, the work is focused on treating metastatic melanoma, an aggressive and deadly form of skin cancer. You can read more about this clinical trial here.

Obstacles and challenges are inevitable in the lifecycle of research. CIRM hopes to help its grantees navigate through these hurdles as quickly and positively as possible by providing recommendations from expert advisors in the field.  The intention is for the CAP meeting process to be that navigating vessel throughout the lifetime of each clinical stage project.

The CAPs will include at least three members: one CIRM science officer, a patient representative, and an external scientific advisor.  The CAP will meet with the project team approximately four times a year, with the first meeting taking place in-person.  Consider the CAP as the grantee’s special team, doing all they can to get that two-point conversion at the end of an already successful outcome, giving the grantee and their team just a few more points in their pocket to reach the ultimate success.


CIRM CAP on a tour of Caladrius’ facility in Irvine, CA.  The CIRM CAP can be seen in the far right of the photo (left to right) Randy Lomax (Patient Representative), Ingrid Caras (CIRM Sr. Science Officer), and Hassan Movahhed (External Scientific Advisor).

As the lead Science Officer on this first CAP, CIRM’s Ingrid Caras stated: “This is our opportunity to be good stewards of the taxpayers’ money.”

The mission and the message of the CAP was well received by Caladrius.  After the CAP meeting, Anna Crivici, VP of Operations & Program Management at Caladrius, had this to say about her experience:

anna crivici

Anna Crivici, Caladrius

I thought that the meeting was very productive.  Everyone on the Caladrius team appreciates the collaborative approach CIRM is taking on the program, as amply demonstrated during our successful first meeting.  The discussion on every agenda topic was helpful and insightful.  The opportunity to better understand the patient perspective will be especially beneficial and increasingly important as the Phase 3 program progresses.  We are confident that this and future CAP meetings will help us advance and refine our strategic planning and execution.


CIRM CAP and members of Caladrius discussing operational strategies for success.

CIRM is looking forward to the 2015/2016 CAP season. And while there is no Super Bowl incentive at the end of our season, there is the hope that CIRM’s efforts, both financially and collaboratively, will contribute to successful treatments for so many out there in need. That’s something well worth cheering for.

3D Printing Cells with DNA Velcro


The complex, 3D micro-anatomy of the human liver. (Image source: WikiMedia Commons)

One of the Holy Grails of stem cell research is growing body parts to replace those damaged by disease or injury. Enormous strides have been made in a key first step: mastering recipes for maturing stem cells into various specialized cell types. But a lawn of, say, liver cells in a petri dish is not a functioning liver. Organs have complex, three-dimensional structures with intricate communication between multiple cell types.

Scientists are actively devising methods to overcome this challenge. For instance, cultivating cells onto biological scaffolds help mold the cells into the shape of a particular organ or tissue. And retooled 3D printers using “bio ink” can seed layers of different cells onto these scaffolds to create specified structures.

This week, a UCSF team added an ingenious new tool to this tissue engineering tool kit.  As reported on Monday in Nature Methods, the lab of Zev Gartner took advantage of DNA’s Velcro-like chemistry to build layers of different cell types in a specified pattern.

DNA – it’s not just for genetics anymore


A DNA fragment is made of two complimentary strands that bind together with high specificity. (Image source: Visionlearning)

DNA is a molecule made of two thin strands. Each strand is specifically attracted to the other based on a unique sequence of genetic information. So if two strands of a short DNA fragment are peeled apart, they will only rejoin to each other and not some other fragment with a different sequence.  While DNA usually resides in the nucleus of a cell, the team worked out a method to temporarily attach copies of a strand of DNA on the outside of, let’s call it, “cell A”. The opposite strand of that DNA fragment was attached to “cell B”. When mixed together the two cells became attached to each other via the matching DNA sequences. Other cells with different DNA fragments floated on by.

The screen shot below from a really neat time-lapse video, which accompanies the research publication, shows how a rudimentary 3D cell structure could be built with a series of different cell-DNA fragment combinations. In this case, the team first attached DNA fragments onto a petri dish in a specific pattern. At the thirty-second mark in the video, you can see that cells with matching DNA fragments have attached to the DNA on the dish.

Screen Shot 2015-09-02 at 8.48.16 AM

This video demonstrates the assembly of 3D cell structures with the help of DNA “Velcro” (image source: Todhunter et al. Nature Methods 2015 Aug 31st)

The new technique, dubbed DNA programmed assembly of cells (DPAC), opens up a lot possibilities according to Gartner in a UCSF press release:

 “We can take any cell type we want and program just where it goes. We can precisely control who’s talking to whom and who’s touching whom at the earliest stages. The cells then follow these initially programmed spatial cues to interact, move around, and develop into tissues over time.”

The Quest still continues with possible victories along the way

 Of course, this advance is still a far cry from the quest for whole organs derived from stem cells. The cell assemblies using DPAC can only be grown up to about 100 microns, the thickness of a human hair. Beyond that size, the innermost cells get starved of oxygen and nutrients. Gartner says that obstacle is a current focus in the lab:

“We’re working on building functional blood vessels into these tissues. We can get the right cells in the right positions but haven’t figured out how to perfuse them with blood or a substitute efficiently yet.”

In the meantime, building these small 3D “organoids” from stem cells certainly could be put to good use as a means to test drug toxicity on human tissue or as a way to study human disease.

Related Links:



CIRM-funded clinical trial for spinal cord injury reports promising results

Today, the Menlo Park-based biotech company Asterias Biotherapeutics reported positive results from the first three patients treated in its Phase 1/2a clinical study using stem cell therapy to treat patients with spinal cord injury. This trial is funded by a CIRM Strategic Partnerships Award grant of $14.3 million.

asteriasAsterias has developed a stem cell therapy called AST-OPC1 that uses oligodendrocyte progenitor cells (OPCs), a kind of cell found in the nervous system, to treat patients that have suffered from different types of spinal cord injury. Damage to the spinal cord causes a range of paralysis based on where it occurs. People with spinal cord trauma to the mid-back often retain the use of their hands and arms but can no longer walk and may lose bladder function. Patients with spinal cord injuries in their neck  can be paralyzed completely from their neck down.

astopc1OPCs are precursors to an important cell type in the central nervous system called the oligodendrocyte. These cells are responsible for forming a conductive sheet around nerve cells that allows nerves to send electrical signals and messages safely from one nerve to another. Both OPCs and oligodendrocytes provide support and protection to nerves in the spinal cord and brain, and they can also facilitate repair of damaged nerves by secreting survival and growth factors as well as promoting the formation of new blood vessels.

In this first part of the Phase 1/2a clinical trial three patients with complete cervical (neck) spinal cord injuries were given a “low dose” of two million AST-OPC1 cells to test the safety and feasibility of their stem cell treatment. The first patient was treated at the Shepard Center in Atlanta,  and at the two month post-injection assessment, the patient experienced no side effects and an improvement from a complete to an incomplete injury on the ASIA impairment injury scale. The other two patients received injections at the Rush University Medical Center in Chicago. Both procedures were reported to have gone smoothly, and the patients are still being monitored.

Asterias plans to treat a second group of patients with higher doses of AST-OPC1 cells (10-20 millions cells). Chief Medical Officer Dr. Edward Wirth explained their strategy:

 The safety data in the first cohort now paves the way for testing the higher doses of AST-OPC1 (10-20 million cells) that we believe correspond most closely to the doses that showed the greatest efficacy in animal studies.

If both the low dose and high dose groups report no serious side effects, Asterias will turn to the Food and Drug Administration (FDA) for approval to expand the patient population of this clinical trial phase from 13 patients up to 40. Asterias hopes that adding more patients “will increase the statistical confidence of the safety and efficacy readouts, reduce the risks of the AST-OPC1 program and position the product for potential accelerated regulatory approvals.”

Spinal cord injury affects more than 12,000 people every year. It remains a major unmet medical need without any FDA-approved therapies or medical devices that improve or restore patient spinal cord function. CIRM is hopeful that Asterias will continue to see positive results with the SCiStar trial and will be able to progress its AST-OPC1 program into late-stage clinical trials and eventually into an FDA-approved stem cell therapy for spinal cord injury.

Related links

Cell mate: the man who makes stem cells for clinical trials

When we announced that one of the researchers we fund – Dr. Henry Klassen at the University of California, Irvine – has begun his clinical trial to treat the vision-destroying disease retinitis pigmentosa, we celebrated the excitement felt by the researchers and the hope from people with the disease.

But we missed out one group. The people who make the cells that are being used in the treatment. That’s like praising a champion racecar driver for their skill and expertise, and forgetting to mention the people who built the car they drive.

Prof. Gerhard Bauer

Prof. Gerhard Bauer

In this case the “car” was built by the Good Manufacturing Practice (GMP) team, led by Prof. Gerhard Bauer, at the University of California Davis (UC Davis).

Turns out that Gerhard and his team have been involved in more than just one clinical trial and that the work they do is helping shape stem cell research around the U.S. So we decided to get the story behind this work straight from the horse’s mouth (and if you want to know why that’s a particularly appropriate phrase to use here read this previous blog about the origins of GMP)

When did the GMP facility start, what made you decide this was needed at UC Davis?

Gerhard: In 2006 the leadership of the UC Davis School of Medicine decided that it would be important for UC Davis to have a large enough manufacturing facility for cellular and gene therapy products, as this would be the only larger academic GMP facility in Northern CA, creating an important resource for academia and also industry. So, we started planning the UC Davis Institute for Regenerative Cures and large GMP facility with a team of facility planners, architects and scientists, and by 2007 we had our designs ready and applied for the CIRM major facilities grant, one of the first big grants CIRM offered. We were awarded the grant and started construction in 2008. We opened the Institute and GMP facility in April of 2010.

How does it work? Do you have a number of different cell lines you can manufacture or do people come to you with cell lines they want in large numbers?

Gerhard: We perform client driven manufacturing, which means the clients tell us what they need manufactured. We will, in conjunction with the client, obtain the starting product, for instance cells that need to undergo a manufacturing process to become the final product. These cells can be primary cells or also cell lines. Cell lines may perhaps be available commercially, but often it is necessary to derive the primary cell product here in the GMP facility; this can, for instance, be done from whole donor bone marrow, from apheresis peripheral blood cells, from skin cells, etc.

How many cells would a typical – if there is such a thing – order request?

Gerhard: This depends on the application and can range from 1 million cells to several billions of cells. For instance, for an eye clinical trial using autologous (from the patient themselves) hematopoietic stem and progenitor cells, a small number, such as a million cells may be sufficient. For allogeneic (from an unrelated donor) cell banks that are required to treat many patients in a clinical trial, several billion cells would be needed. We therefore need to be able to immediately and adequately adjust to the required manufacturing scale.

Why can’t researchers just make their own cells in their own lab or company?

Gerhard: For clinical trial products, there are different, higher, standards than apply for just research laboratory products. There are federal regulations that guide the manufacturing of products used in clinical trials, in this special case, cellular products. In order to produce such products, Good Manufacturing Practice (GMP) rules and regulations, and guidelines laid down by both the Food and Drug Administration (FDA) and the United States Pharmacopeia need to be followed.

The goal is to manufacture a safe, potent and non-contaminated product that can be safely used in people. If researchers would like to use the cells or cell lines they developed in a clinical trial they have to go to a GMP manufacturer so these products can actually be used clinically. If, however, they have their own GMP facility they can make those products in house, provided of course they adhere to the rules and regulations for product manufacturing under GMP conditions.

Besides the UC Irvine retinitis pigmentosa trial now underway what other kinds of clinical trials have you supplied cells for?

Gerhard: A UC Davis sponsored clinical trial in collaboration with our Eye Center for the treatment of blindness (NCT01736059), which showed remarkable vision recovery in two out of the six patients who have been treated to date (Park et al., PMID:25491299, ), and also an industry sponsored clinical gene therapy trial for severe kidney disease. Besides cellular therapy products, we also manufacture clinical grade gene therapy vectors and specialty drug formulations.

For several years we have been supplying clinicians with a UC Davis GMP facility developed formulation of the neuroactive steroid “allopregnanolone” that was shown to act on resident neuronal stem cells. We saved several lives of patients with intractable seizures, and the formulation is also applied in clinical trials for the treatment of traumatic brain injury, Fragile X syndrome and Alzheimer’s disease.

What kinds of differences are you seeing in the industry, in the kinds of requests you get now compared to when you started?

Gerhard: In addition, gene therapy vector manufacturing and formulation work is really needed by several clients. One of the UC Davis specialties is “next generation” gene-modified mesenchymal stem cells, and we are contacted often to develop those products.

Where will we be in five years?

Gerhard: Most likely, some of the Phase I/II clinical trials (these are early stage clinical trials with, usually, relatively small numbers of patients involved) will have produced encouraging results, and product manufacturing will need to be scaled up to provide enough cellular products for Phase III clinical trials (much larger trials with many more people) and later for a product that can be licensed and marketed.

We are already working with companies that anticipate such scale up work and transitioning into manufacturing for marketing; we are planning this upcoming process with them. We also believe that certain cellular products will replace currently available standard medical treatments as they may turn out to produce superior results.

What does the public not know about the work you do that you think they should know?

Gerhard: The public should know that UC Davis has the largest academic Good Manufacturing Practice Facility in Northern California, that its design was well received by the FDA, that we are manufacturing a wide variety of products – currently about 16 – that we are capable of manufacturing several products at one time without interfering with each other, and that we are happy to work with clients from both academia and private industry through both collaborative and Fee-for-Service arrangements.

We are also very proud to have, during the last 5 years, contributed to saving several lives with some of the novel products we manufactured. And, of course, we are extremely grateful to CIRM for building this state-of-the-art facility.

You can see a video about the building of the GMP facility at UC Davis here.

Da Mayor and the clinical trial that could help save his vision

Former San Francisco Mayor and California State Assembly Speaker Willie Brown is many things, but shy is not one of them. A profile of him in the San Francisco Chronicle once described him as “Brash, smart, confident”. But for years Da Mayor – as he is fondly known in The City – said very little about a condition that is slowly destroying his vision. Mayor Brown has retinitis pigmentosa (RP).

RP is a degenerative disease that slowly destroys a person’s sight vision by attacking and destroying photoreceptors in the retina, the light-sensitive area at the back of the eye that is critical for vision. At a recent conference held by the Everylife Foundation for Rare Diseases, Mayor Brown gave the keynote speech and talked about his life with RP.

Willie Brown

He described how people thought he was being rude because he would walk by them on the streets and not say hello. The truth is, he couldn’t see them.

He was famous for driving fancy cars like Bentleys, Maseratis and Ferraris. When he stopped doing that, he said, “people thought I was broke because I no longer had expensive cars.” The truth is his vision was too poor for him to drive.

Despite its impact on his life RP hasn’t slowed Da Mayor down, but now there’s a new clinical trial underway that might help him, and others like him, regain some of that lost vision.

The trial is the work of Dr. Henry Klassen at the University of California, Irvine (UCI). Dr. Klassen just announced the treatment of their first four patients, giving them stem cells that hopefully will slow down or even reverse the progression of RP.

“We are delighted to be moving into the clinic after many years of bench research,” Klassen said in a news release.

The patients were each given a single injection of retinal progenitor cells. It’s hoped these cells will help protect the photoreceptors in the retina that have not yet been damaged by RP, and even revive those that have become impaired but not yet destroyed by the disease.

The trial will enroll 16 patients in this Phase 1 trial. They will all get a single injection of retinal cells into the eye most affected by the disease. After that, they’ll be followed for 12 months to make sure that the therapy is safe and to see if it has any beneficial effects on vision in the treated eye, compared to the untreated one.

In a news release Jonathan Thomas, Ph.D., J.D., Chair of the CIRM Board said it’s always exciting when a therapy moves out of the lab and into people:

“This is an important step for Dr. Klassen and his team, and hopefully an even more important one for people battling this devastating disease. Our mission at CIRM is to accelerate the development of stem cell therapies for patients with unmet medical needs, and this certainly fits that bill. That’s why we have invested almost $19 million in helping this therapy reach this point.”

RP hasn’t defeated Da Mayor. Willie Brown is still known as a sharp dresser and an even sharper political mind. His message to the people at the Everylife Foundation conference was, “never give up, keep striving, keep pushing, keep hoping.”

To learn more about the study or to enroll contact the UCI Alpha Stem Cell Clinic at 949-824-3990 or by email at

And visit our website to watch a presentation about the trial (link) by Dr. Klassen and to hear brief remarks from one of his patients.