Stem Cell Stories that Caught Your Eye: The Most Popular Stem Cellar Stories of 2014

2014 marked an extraordinary year for regenerative medicine and for CIRM. We welcomed a new president, several of our research programs have moved into clinical trials—and our goal of accelerating treatments for patients in need is within our grasp.

As we look back we’d like to revisit The Stem Cellar’s ten most popular stories of 2014. We hope you enjoyed reading them as much as we did reporting them. And from all of us here at the Stem Cell Agency we wish you a Happy Holidays and New Year.

10. UCSD Team Launches CIRM-Funded Trial to Test Safety of New Leukemia Drug

9. Creating a Genetic Model for Autism, with a Little Help from the Tooth Fairy

8. A Tumor’s Trojan Horse: CIRM Researchers Build Nanoparticles to Infiltrate Hard-to-Reach Tumors

7. CIRM funded therapy for type 1 diabetes gets FDA approval for clinical trial

6. New Videos: Living with Crohn’s Disease and Working Towards a Stem Cell Therapy

5. Creativity Program Students Reach New Heights with Stem Cell-Themed Rendition of “Let it Go”

4. Scientists Reach Yet Another Milestone towards Treating Type 1 Diabetes

3. Meet the Stem Cell Agency President C. Randal Mills

2. Truth or Consequences: how to spot a liar and what to do once you catch them

1. UCLA team cures infants of often-fatal “bubble baby” disease by inserting gene in their stem cells; sickle cell disease is next target

CIRM-Funded UC-Irvine Team Set to Launch Stem Cell Trial for Retinitis Pigmentosa in 2015

Rosalinda Barrero has often been mistaken for a rude snob. She has the habit of not saying hello or even acknowledging the presence of acquaintances that she passes around town. But in fact this kind, loving mom of three has been steadily losing her vision over a lifetime. And she doesn’t seem blind because people are still vaguely visible as shadowy ghosts but their faces are unrecognizable.

RosalindaBarrero_blog

Rosalinda Barrero is legally blind due to retinitis pigmentosa. She eagerly awaits the launch of a CIRM-funded trial that will test a candidate stem cell-based treatment.

Barrero is stricken with retinitis pigmentosa (RP) an incurable genetic disease that gradually destroys the light sensing nerve cells, called photoreceptors, located in the retina at the back of the eye. In October, Rosalinda and her husband German spoke to the CIRM governing Board about the devastating impact of RP on their lives and their excitement about a soon to begin CIRM-funded stem cell-based clinical trial for the treatment of RP. The project is headed by UC-Irvine associate professor Henry Klassen, MD, PhD, who also spoke to the Board. Videos of their presentations are now available on our website and below:

Over 3000 known genetic mutations can give rise to RP. These mutations lead to the gradual deterioration of the so-called rod photoreceptors. These rod cells specifically provide our night vision — like on a moonless night. Rosalinda clearly remembers her childhood struggles with night blindness on Halloween:

“I didn’t like trick-or-treating because I couldn’t see in the dark. I ‘d say ‘this is not fun! I’m tripping! I’m losing all my candy!’ I wanted to stay home and hand out candy”

Unfortunately the disease doesn’t stop there. As the rods continue to die off another type of photoreceptor, the cone cells, become innocent bystanders and also gradually deteriorate later in life. As Dr. Klassen explained, it’s the cone cells that are critical for our sight:

“The cones are what humans use for almost all of their vision. Even at night when you’re driving a car with headlights you’re using mainly your cones. So if we could preserve the cones we can really help the patient.”

With the support of a $17 million CIRM Disease Team grant, Klassen and his team anticipates starting a stem-call based clinical trial in early 2015 with the ultimate aim of healing those cone cells in RP patients. The therapy uses a type of immature stem cell of the retina called retinal progenitor cells. The proposed approach relies on the injection of the cells into the jelly of the eye near the retina to promote indirect healing. Klassen explained the project rationale to the Board:

“So we’re talking about little clusters of cells that could fit on the head of a pin in the jelly of the eye and they’re just floating there. And what are they going to do? Well they just sit there and secrete all the factors they normally secrete during retinal development and diffuse into the retina. Once in the retina we believe [based on animal studies] those factors are going to reprogram the photoreceptors into becoming functional again instead of going down that road where they’re going to commit suicide.”

Rosalinda is beyond thrilled with the prospect of being a recipient of this candidate therapy. Her husband German echoed her hopefulness to the Board:

“Even though it’s not a deadly disease, [the therapy] would be life-changing not only for Rosie it would be for everyone around her. “

To learn more about CIRM-funded research related to blindness, visit our fact sheet.

Key stem cell gene controlled from afar, Canadian scientists discover

Embryonic stem cells can, by definition, mature into any cell type in the body. They are able to maintain this state of so-called pluripotency with the help of a gene called Sox2. And now, researchers at the University of Toronto (U of T) have discovered the unseen force that controls it. These findings, reported in the latest issue of Genes & Development, offer much-needed understanding of the steps a cell must take as it grows up.

Mouse embryonic stem cells grown in a round colony of cells (A) and express Sox2 (B), shown in red. Sox2 control region (SCR)-deleted cells have lost the typical appearance of embryonic stem cells (C) and do not express Sox2 (D). [Credit: Jennifer Mitchell/University of Toronto]

Mouse embryonic stem cells grown in a round colony of cells (A) and express Sox2 (B), shown in red. Sox2 control region (SCR)-deleted cells have lost the typical appearance of embryonic stem cells (C) and do not express Sox2 (D). [Credit: Jennifer Mitchell/University of Toronto]

Led by U of T Professor Jennifer Mitchell, the research team were, for the first time, able to identify the specific molecular regulator that switched the Sox2 gene on and off at specific times during an embryonic cell’s lifetime. As Mitchell explained:

“We studied how the Sox2 gene is turned on in mice, and found the region of the genome that is needed to turn the gene on in embryonic stem cells. Like the gene itself, this region of the genome enables these stem cells to maintain their ability to become any type of cell.”

The team named this region the Sox2 control region, or SCR.

For the last decade scientists have been using knowledge gleaned from the Human Genome Project to map how and when genes are switched on and off. Interestingly, the regions that control the gene in question aren’t always located close by.

This was the case with Sox2, said Mitchell. Early on, researchers had argued that Sox2 was regulated from nearby. But in this study, the team found the SCR, which controls Sox2, to be located more than 100,000 DNA base pairs away. According to Mitchell, the process by which the SCR activates Sox2 is fascinating:

“To contact the gene, the DNA makes a loop that brings the SCR close to the gene itself only in embryonic stem cells… It is possible that the formation of the loop needed to make contact with the Sox2 gene is an important final step in the process by which researchers practicing regenerative medicine can generate pluripotent cells from adult cells.”

Indeed, despite a flurry of research breakthroughs and a promising number of clinical trials moving forward, there are still some fundamental aspects of stem cell biology that remain unknown. This discovery, argues Mitchell, is an important step towards reaching toward improving the way in which scientists manipulate stem cells to treat disease.

A time to kill, a time to heal: cells linked to aging also help heal wounds

Senescent cells, so called because of the role they play in the aging process, have acquired a bit of a bad reputation.

Yet new research from the Buck Institute suggests that these cells may not be so bad after all.

Buck Institute faculty Judith Campisi and Postdoc Marco Demaria. [Credit: The Buck Institute]

Buck Institute Professor Judith Campisi and Postdoc Marco Demaria. [Credit: The Buck Institute]

Reporting in today’s issue of Developmental Cell, Buck Institute scientists have found that, while senescent cells do indeed contribute to cellular aging and age-related diseases, they also play an important role in healing wounds. Furthermore, the team has identified the specific molecule in senescent cells that does the healing—pointing to a new therapy that could harness the good aspects of senescent cells, while flushing out the bad.

As we age, so do our cells. During cellular senescence, cells begin to lose their ability to grow and divide. The number of so-called senescent cells accumulates over time, releasing molecules thought to contribute to aging and age-related diseases such as arthritis and some forms of cancer.

But experiments led by Buck Institute Professor Judith Campisi and postdoctoral fellow Marco Demaria revealed that following a skin wound, cells that produce collagen and that line the blood vessels become senescent, and lose the ability to divide. Instead, they accelerate wound healing by secreting a growth factor called PDGF-AA. And once the wound was healed, the cells lost their senescence and shifted back into their normal state.

Because cellular senescence has long been linked to aging and age-related diseases, some research has been focused on finding ways to flush out senescent cells entirely. But the findings by the Buck Institute team throw a wrench in that idea, by revealing that these cells do in fact serve an important purpose.

According to Campisi, there is still a lot to learn:

“It is essential that we understand the full impact of senescence. The possibility of eliminating senescent cells holds great promise and is one of the most exciting avenues currently being explored in efforts to extend healthspan. This study shows that we can likely harness the positive aspects of senescence to ensure that future treatments truly do no harm.”

December ICOC Board Meeting to Begin Soon

The December ICOC Board Meeting begins this morning in Berkeley, CA.

The complete agenda can be found here. Dude to inclement weather our Spotlight on Disease has been canceled.

For those not able to attend, you are welcome to dial in:

To join the event as an attendee
——————————————————-
1. Go to https://cirm.webex.com/mw0307l/mywebex/default.do?nomenu=true&siteurl=cirm&service=6&rnd=0.3004049356896069&main_url=https%3A%2F%2Fcirm.webex.com%2Fec0606l%2Feventcenter%2Fevent%2FeventAction.do%3FtheAction%3Dlandingfrommail%26confViewID%3D2023263422%26%26EMK%3D4832534b0000000206e16422b6688520d75b860933effb35ce2c41b56594ba5351fdb8c0a969dd92%26email%3Dacheung%2540cirm.ca.gov%26encryptTicket%3Daee20fe734ccdae68884f9fe07b3197e%26%26siteurl%3Dcirm

2. Click “Join Now”.

——————————————————-
To join the teleconference only
——————————————————-
Dial in: (800) 398-9389

Confirmation Number: 346314

To access the live event or archive, use this URL:

https://im.csgsystems.com/cgi-bin/confCast

Enter Conference ID# 346314

[Members of the Public will be invited to provide testimony before or during consideration of each item. Makers of public comments are asked to limit their testimony to three (3) minutes.]

Finding the Sweet Spot: shifting metabolism keeps stem cells in suspended animation

The future is bright for a stem cell: it has the potential to become almost anything. This potential is one of its two defining characteristics. The second is that it can create copies of itself over and over again.

Researchers are announcing a new breakthrough on how best to keep embryonic stem cells (above) in a state of suspended animation.

Researchers are announcing a new breakthrough on how best to keep embryonic stem cells (above) in a state of suspended animation.

This second characteristic, known as the ability to self-renew, is of particular importance to researchers. After all, if they are to use stem cell technology to heal injury and treat disease, they must figure out how to keep them suspended in this embryonic state, so that large quantities can be grown in order to manufacture enough treatments for all who need them.

Unfortunately, that is easier said than done. But scientists have made extraordinary progress, developing a specific, nutrient-rich environment—a ‘medium’ called 2i—that can keep cells in a suspended, animation-like state.

The only problem was that they didn’t know why it worked.

Enter a joint team of scientists from The Rockefeller University and Memorial Sloan Kettering Cancer Center in New York, who today announce in the journal Nature that they may have cracked the case. According to team leader C. David Allis, it all comes down to the cell’s metabolism.

A cell’s metabolism is not unlike our body’s metabolism, though on a much smaller scale. Cellular metabolism refers to the process by which chemical reactions transform food into energy and other cellular products through something called the Citric Acid Cycle. The faster the cells’ metabolism, the faster the cycle produces energy, and vice versa.

Previously, scientists had observed a connection between the Citric Acid Cycle and the way in which a cell’s DNA was bundled into what is known as chromatin.

Embryonic stem cells (ES cells) have a different chromatin structure than mature, differentiated cells. This allows for heightened gene expression. [Credit: stembook.org]

Embryonic stem cells (ES cells) have a different chromatin structure than mature, differentiated cells. This allows for heightened gene expression. [Credit: stembook.org]

Chromatin is made by winding DNA strands around proteins called histones, much like winding strands of yarn around a tennis ball. The pattern in which DNA is organized into the chromatin structure is crucial: it affects which genes are switched on and off, and when.

For genes to become activated, or ‘expressed,’ they must be physically accessible within the chromatin structure. Postdoctoral researcher and co-first author Bryce Carey hypothesized that speeding up or slowing down a cell’s metabolism was responsible for which genes were accessible, and could therefore become activated. As he explained in a news release:

“What if, in stem cells, the changes to chromatin reflect a unique metabolism that helps to drive reactions that help to keep chromatin accessible? This connection would explain how embryonic stem cells are uniquely poised to activate so much of their genomes.”

To pinpoint the exact connection between metabolism and gene expression, Carey and co-first author Lydia Finley compared the metabolic functions of embryonic stem cells grown in the 2i medium and compared them to cells grown in a traditional medium made from bovine serum.

When study authors Bryce Carey (left) and Lydia Finley (right) exposed mouse embryonic stem cells to the metabolite alpha-ketoglutarate, those cells became more likely to renew themselves, appearing as pink colonies on the screen. This is one of the first demonstrations that a metabolite can influence the fate of stem cells. [Credit: Zach Veilleux / The Rockefeller University]

When study authors Bryce Carey (left) and Lydia Finley (right) exposed mouse embryonic stem cells to the metabolite alpha-ketoglutarate, those cells became more likely to renew themselves, appearing as pink colonies on the screen. This is one of the first demonstrations that a metabolite can influence the fate of stem cells. [Credit: Zach Veilleux / The Rockefeller University]

Surprisingly, the team found that the 2i cells were producing energy at staggering levels—through a molecular shortcut that cut out an entire step of the Citric Acid Cycle. This shortcut boosted the production of a protein called alpha-ketoglutarate, which in turn spurred more efficient energy production. It was as if the 2i medium instilled these embryonic stem cells with super powers.

Alpha-ketoglutarate appeared to be the key to shifting cells’ metabolism so that the right genes are expressed—thus keeping the cell in an embryonic state. Even cells growing in the traditional, bovine serum medium became supercharged when given a healthy dose of alpha-ketoglutarate.

These results not only solve a long-standing mystery of why the 2i medium was so superior for growing stem cells, they also pinpoint the particular protein—alpha-ketoglutarate—that is at the heart of this difference. This discovery, according to Allis, moves us closer to developing stem cell-based treatments in the clinic:

“This newly established link between metabolism and stem cell fate improves our understanding of development and regeneration, which may, in turn, bring us a little closer to harnessing stem cells’ ability to generate new tissue as a way to, for example, heal spinal cord injuries or cure Type 1 diabetes. It may also add a new dimension to our understanding of cancer, in which differentiated cells erroneously take on stem-cell like properties.”

Stem Cell Stories that Caught our Eye: Stem Cell Summit Roundup, Spinal Cords in a Dish and Stem Cell Tourism in the NFL

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Success at the World Stem Cell Summit. This week some of the biggest names in regenerative medicine descended upon San Antonio, Texas for the annual summit. Along with researchers from the world’s top universities, institutions and companies were members of CIRM, including CIRM President and CEO C. Randall Mills.

We’ve been publishing top highlights from the Summit all week here on the Stem Cellar. There’s also been detailed coverage in the local San Antonio press, including the local ABC station. And if you’d like to find out more about this year’s conference, be sure to visit @WSCSummit and #WSC14 on Twitter.

Scientists have found a way to grow spinal cords from embryonic stem cells in a petri dish. [Credit: Abigail Tucker/ MRC Centre for Developmental Neurobiology/ Wellcome Images.]

Scientists have found a way to grow spinal cords from embryonic stem cells in a petri dish. [Credit: Abigail Tucker/ MRC Centre for Developmental Neurobiology/ Wellcome Images.]

Growing Spinal Cords in the Lab. Tissue engineering, the process of using stem cells to build new tissues and organs, has been the Holy Grail for regenerative medicine. And while there has been some progress with engineering some organs, others—especially the spinal cord—have proven far more difficult. This is because the biodegradable scaffolding cannot be made correctly to grow complex and intricately connected nerve cells.

But now, a research team in Germany has grown complete spinal cords in the lab, pointing to a new strategy for treating those with irreparable spinal cord injuries.

As reported in The Guardian this week, Andrea Meinhardt of the Dresden University of Technology and her colleagues worked around the problem of scaffolding by employing a new method called self-directed morphogenesis, first developed by the late Yoshiki Sasai. According to The Guardian‘s Mo Costandi:

“Self-directed morphogenesis is a method for growing embryonic stem cells in a three-dimensional suspension. Cells grown in this way can, when fed the right combination of signaling molecules, go through the motions of development and organize themselves to form complex tissues such as eyes, glands and bits of brain.”

While preliminary, this research offers immense promise towards the ultimate goal: reversing the devastating effects of spinal cord injuries.

Stem Cells and the NFL. Despite the best efforts of experts, stem cell tourism continues to proliferate. A new study published this week in 2014 World Stem Cell Report (a special supplement to Stem Cells and Development) describes the latest example of people seeking unproven stem cell treatments: this time in the NFL.

New research from Rice University is suggesting that some NFL players are seeking out unproven stem cell treatments—oftentimes traveling abroad without fully understanding the risks. This poses serious problems not only for players but also for the NFL as a whole. As Co-lead author Kirsten Matthews elaborated in a news release:

“With the rise of new and unproven stem cell treatments, the NFL faces a daunting task of trying to better understand and regulate the use of these therapies in order to protect the health of its players.”

Specifically, 12 NFL players are known to have received unproven treatments at some point during the last five years, including star quarterback Peyton Manning who we’ve blogged about before The authors caution that high-profile players broadcasting that they are receiving these unproven therapies could influence regular patients who are also desperate for cures.

In order to fix this growing problem, the authors recommend the NFL review and investigate these unproven stem cell treatments with the help of an independent committee of medical professionals. Finally, they suggest that the NFL could support stem cell research here in the United States—so that proven, effective stem cell-based treatments could more quickly enter the clinic.

How partnering with someone half way around the world could help develop new treatments here in California

Much as we love California, and we really do, even we have to admit that genius knows no boundaries and that great scientific research is taking place all over the world. As our goal as an agency is to accelerate the development of successful therapies for people in need it only makes sense that we would try and tap into that genius, wherever it is, in whatever way we can. That’s where our Collaborative Funding Partnership (CFP) program comes in.

Michel Hivert, Executive Director at MATIMOP (L) and ICOC Chairman Jonathan Thomas

Michel Hivert, Executive Director at MATIMOP (L) and ICOC Chairman Jonathan Thomas

Under Proposition 71, the voter-approved initiative that created the stem cell agency, all the research we fund has to be in California. But that doesn’t mean we can’t help create collaborations between researchers here – that we fund – and researchers in other parts of the world who get funding from other sources. And we do just that. In fact we now have 24 CFPs stretching from New York state to Brazil, Japan, the UK and Australia.

And now we have added two more. One with Poland two weeks ago  and today, with Israel. As the Chair of our governing Board, Jonathan Thomas said in a news release , the goal of these agreements is simple, to advance stem cell research around the world:

“Israel has long had a robust stem cell research community. Through this newly announced collaboration, we hope to generate partnerships between Israeli and California scientists that build on our complementary strengths and generate joint research projects that will benefit patients everywhere.”

Dr. Andy David, Consul General of Israel to the Pacific North West, echoed those sentiments:

“It represents a practical expression of shared interests that is unusual for its depth and range. Israel and California are on opposite corners of the globe geographically, but they are practically coming closer every day. The reason for this thriving relationship is the understanding that we are strong mutual assets.”

But nice as these partnerships are the only questions that really matter are do these collaborations really make a difference; do they really help increase the likelihood of a successful therapy? The answer from our experience is yes. For example, a team we are funding at Stanford is collaborating with a team from the Medical Research Council in the UK, focused on solid tumor cancers. The Stanford team has been given approval by the Food and Drug Administration (FDA) to run a clinical trial testing this approach on solid tumors, while the UK team is using the same approach to tackling acute myeloid leukemia (AML) an often-fatal cancer of the blood and bone marrow. Knowledge gained from one trial may well benefit the other and could ultimately lead to approaches to treating other solid tumor cancers such as breast, ovarian, bladder and colon.

Disease does not stop at the border and we see no reason for our engagement with the best science, and the best scientists, to stop there either. Our goal is to find cures, and we’ll go wherever we have to and work with whoever we can to meet that goal.

 

 

 

 

At World Stem Cell Summit improvements in the precision with which we can edit our genes grabs spotlight

Just a day and a half into this year’s World Stem Cell Summit in San Antonio and there have been numerous highlights. But a pair of sessions on gene editing grabbed the attention of many of the scientists at the meeting. One of the renown leaders in the field, Harvard’s George Church wowed the scientists, but I fear the heavy dose of scientific detail may have overwhelmed many of the patient advocates that make the attendee mix at this meeting special.

George Church speaking recently [Credit: PopTech.org]

George Church speaking recently [Credit: PopTech.org]

In 2013, Church first published results using a new gene-editing tool he helped perfect called CRISPR, and almost immediately it became the most talked-about tool for advancing stem cell research. As powerful as stem cells may be by themselves, in many situations, they become even more powerful—especially if you use them to deliver a gene that corrects an error in a patient’s cells. Before 2013 we had a few ways to edit genes in living cells and all were modestly effective at making the desired change and relatively specific in making only a few unwanted changes, called “off target” edits.

In some uses, particularly when cells are being modified in the lab for specific and small targets, these other editing techniques are probably OK. This is what several CIRM-funded teams (links) are doing with diseases like sickle cell anemia and HIV, where you can target blood-forming stem cells and even giving a small percentage the proper gene edit may be sufficient to cure the disease. But with something like muscular dystrophy where the gene editing would be required throughout the body and have to be done in the patient not in the lab, you need to improve the efficiency and precision.

CRISPR/Cas9 [Credit: University of California, San Francisco]

CRISPR/Cas9 [Credit: University of California, San Francisco]

After that first publication CRISPR was viewed as a home run in efficiency, taking the number of cells with the gene correction from a few percent to 50 percent or more. But it still had off-target effects. Yet only a year after the technology was introduced, a few teams developed so-called “next generation” CRISPR that comes close to perfect precision, causing an unintended edit in just one in a billion cells, by Church’s estimate.

I have never seen the full name of CRISPR spelled out in a scientific presentation, and after a visit to Wikipedia I know why. Here it is: Clustered Regularly Interspersed Short Palindromic Repeats. Basically, Church took advantage of something that occurs naturally in many bacteria. Just as we are susceptible to viruses, bacteria have their version known as phages. When those parasites integrate their DNA into the bacteria’s genes, part of the bacterial DNA forms CRISPRs that can partner with a protein called Cas to cut the phage DNA and keep the phage from hurting the host bacteria.

In a research setting, creating that “nick” in the DNA is the first step in harnessing CRISPR to insert a desired gene. So, that extreme precision in finding spots on our DNA where we want to create an opening for inserting a new gene became this valuable research tool. It can create a nick as precise as a single nucleotide base, the building blocks of our DNA.

Church and two additional speakers gave detailed descriptions about how the technology has improved and how it is being used to model disease today and is expected to be used to treat disease in the near future. An exciting future is in store.

Don Gibbons

Truth or Consequences: how to spot a liar and what to do once you catch them

Nothing undermines the credibility of science and scientists more than the retraction a high profile paper. Earlier this year there was a prime example of that when researchers at one of Japan’s most prestigious research institutions, the Riken Center for Developmental Biology in Kobe, had to retract a study that had gathered worldwide attention. The study, about a new method for creating embryonic-like stem cells called stimulus triggered acquisition of pluripotency or STAP, was discredited after it was discovered that the lead author had falsified data.

Publication retractions have increased dramatically in recent years [Credit: PMRetract]

Publication retractions have increased dramatically in recent years [Credit: PMRetract]

The STAP incident drew international coverage and condemnation and raised the question, how common is this and what can be done to combat it? A panel discussion at the World Stem Cell Summit in San Antonio, Texas entitled “Reproducibility and rigor in research: What have we learned from the STAP debacle” tackled the subject head on.

Ivan Oransky, medical journalist and the co-founder of the website Retraction Watch posed the question “Does stem cell research have a retraction problem?” He says:

“The answer to my question is yes. But so does everyone else. All of science has a retraction problem, not just stem cells.”

Oransky says the number of retractions has doubled from 2001 to 2010. One author has retracted 183 times – the record so far – but to break into the top 5 you need to have at least 50 retractions. These come from all over the world from the US to Germany and Japan and most recently Azerbaijan.

Oransky says part of the problem is the system itself. Getting your research results published is critical to advancing a career in science and those kinds of pressures force people to cut corners, take risks or even just falsify data and manipulate images in order to get a paper into a high profile journal. In most cases, journals charge a fee of several hundred to thousands of dollars to publish studies, so they have no incentive to dig too deeply into findings looking for flaws, as it might undermine their own business model.

“Some authors, more than 100, have been caught reviewing their own papers. When the journal they were submitting their paper to asked for the names of recommended reviewers they would submit the names of people who are legitimate reviewers in the field but instead of giving real email addresses they would give fake email addresses, ones they controlled so they could submit their own reviews under someone else’s name.”

What gave them away is that all the potential “reviewers” didn’t first reply and say “yes, I’ll review”, instead they responded by sending back a full review of the paper, raising suspicions and ultimately to detection.

Graham Parker, a researcher at Wayne State University School of Medicine and the editor of Stem Cell and Development says spotting the problem is not always easy:

“As an editor I regard scientific misconduct as fabrication, falsification or plagiarism of data but there are lots of other areas where it’s not always so clear – there are often shades of gray”

He says researchers may make an honest mistake, or include duplicative images and in those cases should be allowed to fix the problems without any stigma attached. But when serious cases of falsification of data are uncovered they can have a big impact by retarding scientific progress and sapping public confidence in the field as a whole.

Jeanne Loring, a stem cell scientist at The Scripps Research Institute and a recipient of funding from CIRM, says the STAP incident was actually a sign of progress in this area. Ten years ago when a Korean researcher named Hwang Woo-Suk claimed to have cloned human embryos it took more than a year before he was found to have falsified the data. But in the STAP case it took a little over a week for other researchers to start raising red flags:

“One of the real heroes in this story is Paul Knoepfler (a CIRM-funded researcher at UC Davis) who takes on difficult issues in his blog. It took Paul just 8 days to post a request for people to crowdsource this study, asking people who were trying to replicate the findings to report their results – and they did, showing they failed over and over again”

Parker said it’s getting easier for editors and others in the field to double check data in studies. For example new software programs allow him to quickly check submitted manuscripts for plagiarism. And he says there is a growing number of people who enjoy looking for problems.

“Nowadays it’s so easy for people to dig very deeply into papers and check up on every aspect of it, from the content to the methodology to the images they use and whether those images were in any way manipulated to create a false impression. Once they find a problem with one paper they’ll dig back through papers in that scientist’s past to see if they can find other problems dating back years that were never found at the time.”

He says that in most cases researchers caught falsifying data or deliberately misleading journals faced few consequences:

“Often the consequences of misconduct are very mild, the equivalent of a slap on the wrist, which does not discourage others from trying to do the same.”

Each panel member says that tougher penalties are needed. For example, in extreme cases a threat of criminal action could be warranted, if the falsified research could lead to serious consequences for patients.

But the panel ended on an encouraging note. Oransky says, for example, that medical journals are now paying more attention and imposing stricter rules and he says there’s even scientific evidence that “doing the right thing might pay off.”

“One study recently showed that if you made an honest error and corrected it publicly not only does the stigma of retraction not apply to you, you don’t get a decrease in your citations—you actually get an increase. So we’d like to think that doing the right thing is a good thing and might actually be a positive thing.”