Taking stock: ten years of the stem cell agency, progress and promise for the future

Under some circumstances ten years can seem like a lifetime. But when lives are at stake, ten years can fly by in a flash.

Ten years ago the people of California created the stem cell agency when they overwhelmingly approved Proposition 71, giving us $3 billion to fund and support stem cell research in the state.

In 2004 stem cell science held enormous potential but the field was still quite young. Back then the biology of the cells was not well understood, and our ability to convert stem cells into other cell types for potential therapies was limited. Today, less than 8 years after we actually started funding research, we have ten projects that are expected to be approved for clinical trials by the end of the year, including work in heart disease and cancer, HIV/AIDS and diabetes. So clearly great progress has been made.

Dean Carmen Puliafito and the panel at the Tenth Anniversary event at USC

Dean Carmen Puliafito and the panel at the Tenth Anniversary event at USC

Yesterday we held an event at the University of Southern California (USC) to mark those ten years, to chart where we have come from, and to look to where we are going. It was a gathering of all those who have, as they say, skin in the game: researchers, patients and patient advocates.

The event was held at the Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research. As Dr. Carmen Puliafito, Dean of USC’s Keck School of Medicine noted, without CIRM the building would not even exist.

“With this funding, our researchers, and researchers in 11 other facilities throughout the state, gained a dedicated space to hunt for cures for some of the most pernicious diseases in the world, including heart disease, stroke, cancer, diabetes, Alzheimer’s and Parkinson’s disease.”

Dr. Dhruv Sareen from Cedars-Sinai praised CIRM for creating a whole new industry in the state:

“What Silicon Valley has done for technology, CIRM is doing for stem cell research in California.”

One of the beneficiaries of that new industry has been ViaCyte, a San Diego-based company that is now in clinical trials with a small implantable device containing stem cell-derived cells to treat type 1 diabetes. ViaCyte’s Dr. Eugene Brandon said without CIRM none of that would have been possible.

“In 2008 it was extremely hard for a small biotech company to get funding for the kind of work we were doing. Without that support, without that funding from CIRM, I don’t know where this work would be today.”

As with everything we do, at the heart of it are the patients. Fred Lesikar says when he had a massive heart attack and woke up in the hospital his nurse told him about a measure they use to determine the scale of the attack. When he asked how big his attack had been, she replied, “I’ve never seen numbers that large before. Ever.”

Fred told of leaving the hospital a diminished person, unable to do most basic things because his heart had been so badly damaged. But after getting a stem cell-based therapy using his own heart cells he is now as active as ever, something he says doesn’t just affect him.

“It’s not just patients who benefit from these treatments, families do too. It changes the life of the patient, and the lives of all those around them. I feel like I’m back to normal and I’m so grateful for CIRM and Cedars-Sinai for helping me get here.”

The team behind that approach, based at Cedars-Sinai, is now in a much larger clinical trial and we are funding it.

The last word in the event was left to Bob Klein, who led the drive to get Proposition 71 passed and who was the agency’s first Chair. He said looking at what has happened in the last ten years: “it is beyond what I could have imagined.”

Bob noted that the field has not been without its challenges and problems to overcome, and that more challenges and problems almost certainly lie in the future:

“But the genius of the people of this state is reflected in their commitment to this cause, and we should all be eternally grateful for their vision in supporting research that will save and transform people’s lives.”

10 Years/10 Therapies: 10 Years after its Founding CIRM will have 10 Therapies Approved for Clinical Trials

In 2004, when 59 percent of California voters approved the creation of CIRM, our state embarked on an unprecedented experiment: providing concentrated funding to a new, promising area of research. The goal: accelerate the process of getting therapies to patients, especially those with unmet medical needs.

Having 10 potential treatments expected to be approved for clinical trials by the end of this year is no small feat. Indeed, it is viewed by many in the industry as a clear acceleration of the normal pace of discovery. Here are our first 10 treatments to be approved for testing in patients.

HIV/AIDS. The company Calimmune is genetically modifying patients’ own blood-forming stem cells so that they can produce immune cells—the ones normally destroyed by the virus—that cannot be infected by the virus. It is hoped this will allow the patients to clear their systems of the virus, effectively curing the disease.

Spinal cord injury patient advocate Katie Sharify is optimistic about the latest clinical trial led by Asterias Biotherapeutics.

Spinal cord injury patient advocate Katie Sharify is optimistic about the clinical trial led by Asterias Biotherapeutics.

Spinal Cord Injury. The company Asterias Biotherapeutics uses cells derived from embryonic stem cells to heal the spinal cord at the site of injury. They mature the stem cells into cells called oligodendrocyte precursor cells that are injected at the site of injury where it is hoped they can repair the insulating layer, called myelin, that normally protects the nerves in the spinal cord.

Heart Disease. The company Capricor is using donor cells derived from heart stem cells to treat patients developing heart failure after a heart attack. In early studies the cells appear to reduce scar tissue, promote blood vessel growth and improve heart function.

Solid Tumors. A team at the University of California, Los Angeles, has developed a drug that seeks out and destroys cancer stem cells, which are considered by many to be the reason cancers resist treatment and recur. It is believed that eliminating the cancer stem cells may lead to long-term cures.

Leukemia. A team at the University of California, San Diego, is using a protein called an antibody to target cancer stem cells. The antibody senses and attaches to a protein on the surface of cancer stem cells. That disables the protein, which slows the growth of the leukemia and makes it more vulnerable to other anti-cancer drugs.

Sickle Cell Anemia. A team at the University of California, Los Angeles, is genetically modifying a patient’s own blood stem cells so they will produce a correct version of hemoglobin, the oxygen carrying protein that is mutated in these patients, which causes an abnormal sickle-like shape to the red blood cells. These misshapen cells lead to dangerous blood clots and debilitating pain The genetically modified stem cells will be given back to the patient to create a new sickle cell-free blood supply.

Solid Tumors. A team at Stanford University is using a molecule known as an antibody to target cancer stem cells. This antibody can recognize a protein the cancer stem cells carry on their cell surface. The cancer cells use that protein to evade the component of our immune system that routinely destroys tumors. By disabling this protein the team hopes to empower the body’s own immune system to attack and destroy the cancer stem cells.

Diabetes. The company Viacyte is growing cells in a permeable pouch that when implanted under the skin can sense blood sugar and produce the levels of insulin needed to eliminate the symptoms of diabetes. They start with embryonic stem cells, mature them part way to becoming pancreas tissues and insert them into the permeable pouch. When transplanted in the patient, the cells fully develop into the cells needed for proper metabolism of sugar and restore it to a healthy level.

HIV/AIDS. A team at The City of Hope is genetically modifying patients’ own blood-forming stem cells so that they can produce immune cells—the ones normally destroyed by the virus—that cannot be infected by the virus. It is hoped this will allow the patients to clear their systems of the virus, effectively curing the disease

Blindness. A team at the University of Southern California is using cells derived from embryonic stem cell and a scaffold to replace cells damaged in Age-related Macular Degeneration (AMD), the leading cause of blindness in the elderly. The therapy starts with embryonic stem cells that have been matured into a type of cell lost in AMD and places them on a single layer synthetic scaffold. This sheet of cells is inserted surgically into the back of the eye to replace the damaged cells that are needed to maintain healthy photoreceptors in the retina.

UCLA team cures infants of often-fatal “bubble baby” disease by inserting gene in their stem cells; sickle cell disease is next target

Poopy diapers, ear-splitting cries, and sleepless nights: sure, the first few weeks of parenthood are grueling but those other moments of cuddling and kissing your little baby are pure bliss.

The bubble boy.  Born in 1971 with SCID, David Vetter lived in a sterile bubble to avoid outside germs that could kill him. He died in 1984 at 12 due to complications from a bone marrow transplant. [Credit: Baylor College of Medicine Archives]

The bubble boy. Born in 1971 with SCID, David Vetter lived in a sterile bubble to avoid outside germs that could kill him. He died in 1984 at 12 due to complications from a bone marrow transplant. [Credit: Baylor College of Medicine Archives]

That wasn’t the case for Alysia and Christian Padilla-Vacarro of Corona, California. Close contact with their infant daughter Evangelina, born in 2012, was off limits. She was diagnosed with a genetic disease that left her with no immune system and no ability to fight off infections so even a minor cold could kill her.

Evangelina was born with Severe Combined Immunodeficiency (SCID) also called “bubble baby” disease, a term coined in the 1970s when the only way to manage the disease was isolating the child in a super clean environment to avoid exposure to germs. Bone marrow transplants from a matched sibling offer a cure but many kids don’t have a match, which makes a transplant very risky. Sadly, many SCID infants die within the first year of life.

Until now, that is.

Today, a UCLA research team led by Donald Kohn, M.D., announced a stunning breakthrough cure that saved Evangelina’s life and all 18 children who have so far participated in the clinical trial. Kohn—the director of UCLA’s Human Gene Medicine Program—described the treatment strategy in a video interview with CIRM (watch the video below):

“We collect some of the baby’s own bone marrow, isolate the [blood] stem cells, add the gene that they’re missing that their immune system needs and then transplant the cells back to them. “

Inserting the missing gene, called ADA, into the blood stem cells restores the cells’ ability to produce a healthy immune system. And since the cells originally came from the infant, there’s no worry about the possible life-threatening complications from receiving non-matched donor cells.

This breakthrough didn’t occur overnight. Kohn and colleagues have been plugging away for over twenty years carrying out trials, observing their limitations and going back to lab to improve the technology. Their dedication has paid off. As Kohn states in a press release:

“All of the children with SCID that I have treated in these stem cell clinical trials would have died in a year or less without this gene therapy, instead they are all thriving with fully functioning immune systems.”

Alysia Padilla-Vacarro and daughter Evangelina on the day of her gene therapy treatment. Evangelina, now two years old, has had her immune system restored and lives a healthy and normal life. [Credit: UCLA Broad Center of Regenerative Medicine and Stem Cell Research.]

Alysia Padilla-Vacarro and daughter Evangelina on the day of her gene therapy treatment. Evangelina, now two years old, has had her immune system restored and lives a healthy and normal life. [Credit: UCLA Broad Center of Regenerative Medicine and Stem Cell Research.]

For the Padilla-Vacarro family, the dark days after Evangelina’s grave diagnosis have given way to a bright future. Alysia, Evangelina’s mom, poignantly recalled her daughter’s initial recovery:

”It was only around six weeks after the procedure when Dr. Kohn told us Evangelina can finally be taken outside. To finally kiss your child on the lips, to hold her, it’s impossible to describe what a gift that is. I gave birth to my daughter, but Dr. Kohn gave my baby life.”

The team’s next step is to get approval by the Food and Drug Administration (FDA) to provide this treatment to all SCID infants missing the ADA gene.

At the same time, Kohn and colleagues are adapting this treatment approach to cure sickle cell disease, a genetic disease that leads to sickle shaped red blood cells. These misshapen cells are prone to clumping causing debilitating pain, risk of stroke, organ damage and a shortened life span. CIRM is providing over $13 million in funding to support the UCLA team’s clinical trial set to start early next year.

For more information about CIRM-funded sickle cell disease research, visit our fact sheet.

Entrepreneurship and Education

Guest author Neil Littman is CIRM’s Business Development Officer.

CIRM works closely with UCSF on a number of initiatives, from providing funding to academic investigators to jointly hosting events such as the recent CIRM Showcase with J-Labs held at the Mission Bay campus.

Beyond our joint initiatives, UCSF also provides many other valuable resources and educational opportunities to the life sciences community in the Bay Area. For instance, I was a mentor in UCSF’s “Idea to IPO” class which focused on helping students translate concepts into a commercializable product and viable business.

Another opportunity that may be of interest to all you budding entrepreneurs is UCSF’s Lean LaunchPad course, which kicks off in January (application deadline is Nov 19th). The course teaches…

“scientists and clinicians how to assess whether the idea or technology they have can serve as the basis of a business. The focus is on the marketplace where you must validate that your idea has value in order to move into the commercial world.”

See more at: Lean Launchpad for Life Sciences & Healthcare.

The course is being run out of the Entrepreneurship Center at UCSF, which is a division of the UCSF Office of Innovation, Technology & Alliances (ITA).

More Than Meets the Eye: Protein that Keeps Cancer in Check also Plays Direct Role in Stem Cell Biology, a Stanford Study Finds.

Here’s a startling fact: the retinoblastoma protein —Rb, for short — is defective or missing in nearly all cancers.

Rb is called a tumor suppressor because it prevents excessive cell growth by acting as a crucial traffic stop for the cell cycle, a process that controls the timing for a cell to divide and multiply. Without a working Rb protein, that traffic barrier on cell division is effectively removed, allowing unrestricted cell growth and a path towards cancer.

Retinoblastoma - a known road block to cancer growth also inhibits a stem cell's capacity to change into any cell type

Retinoblastoma – a known road block to cancer growth also inhibits a stem cell’s capacity to change into any cell type

The Rb gene was cloned over two decades ago and its link to cancer has been known for years. But today in Cell Stem Cell, CIRM-funded scientists at Stanford University report an unexpected finding: Rb protein also inhibits a stem cell’s pluripotency, or it’s capacity to become any type of cell in the body. Julien Sage, a senior author of the report, described this new facet to Rb in a press release:

“We were very surprised to see that retinoblastoma directly connects control of the cell cycle with pluripotency. This is a completely new idea as to how retinoblastoma functions.”

The research team uncovered Rb’s versatility in experiments using the induced pluripotent stem cell (iPS) technique in which adult cells, such as a skin, are reprogrammed to an embryonic stem cell-like state that, in turn, can be transformed into any cell type.

Creating iPS cells is notoriously slow and inefficient. However, the Stanford scientists found that cells without Rb were much easier and faster to convert to iPS than cells with normal Rb. And when Rb protein levels in the cells were boosted, it was much more difficult to make the iPS cells — suggesting that the presence of Rb was encouraging the skin cells to remain skin and to resist reprogramming into an iPS cell. As Marius Wernig, the other senior author, sums it up:

“The loss of Rb appears to directly change a cell’s identity. Without the protein, the cell is much more developmentally fluid and is easier to reprogram into an iPS cell.”

And Dr. Sage further points out that:

“The process of creating iPS cells from fully differentiated, or specialized, cells is in many ways very similar to what happens when a cell becomes cancerous.”

So now that the team has established the Rb protein’s direct link between stem cell and cancer biology, they stand at unique vantage point to gain new insights on the inner workings of both, such as better iPS methods and new cancer therapy targets.

To hear about more aspects of Marius Wernig’s research, watch his 30 second elevator pitch below:

Creating a Genetic Model for Autism, with a Little Help from the Tooth Fairy

One of the most complex aspects of autism is that it is not one disease—but many. Known more accurately as the autism spectrum disorder, or ASD, experts have long been trying to tease apart the various ways in which the condition manifests in children, with limited success.

But now, using the latest stem cell technology, scientists at the University of California, San Diego (UCSD) have identified a gene associated with Rett Syndrome—a rare form of autism almost exclusively seen in girls. And in so doing, the team has made the startling discovery that the many types of autism may be linked by common molecular pathways.

The research team, led by UCSD Professor and CIRM grantee Alysson Muotri, explained in a news release how induced pluripotent stem cell, or iPS cell, technology was used to pinpoint a gene associated with Rett Syndrome:

“One can take advantage of genomics to map all mutant genes in the patient and then use their own iPS cells to measure the impact of mutations in relevant cell types. Moreover, the study of brain cells derived from these iPS cells can reveal potential therapeutic drugs tailored to the individual. It is the rise of personalized medicine for mental and neurological disorder.”

iPS cell technology—a process by which scientists transform adult skin cells back into embryonic-like stem cells, after which they can be coaxed into maturing into virtually any type of cell—is a promising way to model diseases at the cellular level. But in order to truly understand what is happening in the brains of people with autism, Muotri and his team needed more samples from autistic individuals—on the order of hundreds or even thousands.

The Tooth Fairy Project allows scientists to gather large quantities of cells from autistic individuals for genomic analysis—simply asking parents to send in a discarded baby tooth.

The Tooth Fairy Project allows scientists to gather large quantities of cells from autistic individuals for genomic analysis—simply by asking parents to send in a discarded baby tooth.

Luckily, Muotri had a little help from the Tooth Fairy.

Or, more accurately, the Tooth Fairy Project, in which parents register for a “Fairy Tooth Kit” that lets them send a discarded baby tooth of their autistic child to researchers. Housed within each baby tooth are cells that can be transformed—with iPS cell technology—into neurons, thus giving the researchers a massive sample size with which to study.

Interestingly, the findings presented here come from the very first tooth to be sent to Muotri. Specifically, the team identified a mutation in the gene TRPC6 was present in children with autism. Additional experiments in animal models revealed that the TRPC6 mutation was indeed associated with abnormal brain cell development and function.

And for their next trick, the team found a way to reverse the mutation’s damaging effects.

By treating the cells with the chemical hyperforin, they were able to restore some normal function to the neurons—offering up a potential therapeutic strategy for treating ASD patients who harbor the TRPC6 mutation.

Drilling down even further, the team found that mutations in another gene called MeCP2, which causes Rett Syndrome, also set off a genetic domino effect that alters the normal function of the TRPC6 gene. Thus connecting this syndrome with other, non-syndromic types of autism.

“Taken together, these findings suggest that TRPC6 is a novel predisposing gene for ASD that may act in a multiple-hit model,” said Muotri. “This is the first study to use iPS cell-derived human neurons to model non-syndromic ASD and illustrate the potential of modeling genetically complex sporadic diseases using such cells.”

Find out more about how stem cell research could help solve the mysteries behind autism in our Autism Fact Sheet.

CIRM Scientists Discover Key to Blood Cells’ Building Blocks

Our bodies generate new blood cells—both red and white blood cells—each and every day. But reproducing that feat in a petri dish has proven far more difficult.

Pictured: sections from zebrafish embryos. Blood vessels are labeled in red, the protein complex that regulates inflammation green and cell nuclei in blue. The arrowhead indicates a potential HSC. The image at bottom right combines all channels. [Credit: UC San Diego School of Medicine]

Pictured: sections from zebrafish embryos. Blood vessels are labeled in red, the protein complex that regulates inflammation green and cell nuclei in blue. The arrowhead indicates a potential HSC. The image at bottom right combines all channels.
[Credit: UC San Diego School of Medicine]

But now, scientists have identified the missing ingredient to producing hematopoietic stem cells, or HSC’s—the type of stem cell that gives rise to all blood and immune cells in the body. The results, published last week in the journal Cell, describe how a newly discovered protein plays a key role in generating HSC’s in the developing embryo—giving scientists a more complete recipe to reproduce these cells in the lab.

The research, which was led by University of California, San Diego (UCSD) professor David Traver and supported by a grant from CIRM, offers renewed hope for the possibility of generating patient-specific blood or immune cells using induced pluripotent stem cell (iPS cell) technology.

As Traver explained in last week’s news release:

“The development of some mature cell lineages from iPS cells, such as cardiac or neural, has been reasonably straightforward, but not with HSCs. This is likely due, at least in part, to not fully understanding all the factors used by the embryo to generate HSCs.”

Indeed, the ability to generate HSCs has long challenged scientists, as outlined in a CIRM workshop from last year. But now, says Traver, they have found a crucial piece to the puzzle.

Specifically, the researchers investigated a signaling protein called tumor necrosis factor alpha—or TNFα for short— a protein known to be important for regulating inflammation and immunity. Previous research by this study’s first author, Raquel Espin-Palazon, and others also discovered it was related to the healthy function of blood vessels during embryonic development.

In this study, Traver, Espin-Palazon and the UCSD drilled down even further—and found that TNFα was required for the normal development of HSCs in the embryo. This surprised the research team, as the young embryo is generally considered to be sterile—with no need for a protein normally charged with regulating immune response to be switched on. Explained Traver:

“There was no expectation that pro-inflammatory signaling would be active at this time or in the blood-forming regions.”

While preliminary, establishing this relationship between TNFα and HSC formation will be a boon to researchers looking for new ways to generate large quantities of healthy, patient-specific red and white blood cells for those patients who so desperately need them.

Learn more about how stem cell technology could help treat blood diseases in our Thalassemia Fact Sheet.

Ideas and Energy Reveal Surprises at Stem Cell Showcase

Janssen, the company within the pharmaceutical giant Johnson & Johnson responsible for much of its research and development, has a branch in the Bay Area called J Labs. It seeks to foster innovation in all sectors of biomedical research. One piece of that effort brings together innovators for monthly gatherings to exchange ideas and network. The events have an upbeat sense of energy so it was exciting when they invited CIRM to put together an all-day session dubbed: CIRM Showcase: Accelerating Stem Cell Treatments to Patients.

logo

The resulting showcase yesterday had that energy. But for someone who knows the CIRM portfolio of projects backward and forward, I thought, there were a few pleasant surprises. Perhaps the most exciting news came from Linda Marban, CEO of Capricor, the company CIRM is funding to complete a clinical trial in patients with weakened hearts after a heart attack. She disclosed that the company’s next target is the heart remodeling that is the cause of death in most boys with Duchenne muscular dystrophy. She said some early data would be released at the American Heart Association meeting in Chicago in two weeks.

Another bit of news—most exciting for science wonks—came from the biotech company Sangamo that CIRM funds to develop genetically modified blood stem cells as therapy for two diseases, HIV and beta thalassemia. The firm has developed a molecular scissors called a zinc finger nuclease that can splice the DNA that makes our genes. I knew the technique was pretty precise, but Curt Herberts from the company said they had perfected it to where it could get down to a single base pair—a single link in the chain that makes up our DNA. This greatly reduces the chances for any unintended effects of the genetic manipulation.

Two advances I learned about were in using iPS type stem cells as models for disease and for discovery of traditional drugs to treat those diseases. Ashkan Javaherian, from Steve Finkbeiner’s lab at the Gladstone Institutes, described some results with the robotic microscope they have developed that lets them screen hundreds of molecules on neurons grown from iPS cells reprogrammed from patients with specific diseases. Looking just at compounds already approved by the Food and Drug Administration (FDA), ones that could be put in the clinic quickly, they found four that reduced the degradation normally seen in neurons grown from patients with Huntington’s disease.

Similarly, Joseph Wu of Stanford described his work with cells from families with various genetic heart disorders. In addition to getting individualized information from the patient-specific cells, he said they could now take it one step further and sequence the entire DNA of the cells for just $500, yielding the chance to find out exactly what mutations were causing the disease. He said it was a big step towards truly personalized medicine and to developing therapies for various racial groups that respond differently to drugs.

The day began with our President and CEO C. Randall Mills detailing his plans for a nimbler, more responsive CIRM he has dubbed CIRM 2.0. This crowd seemed thrilled with his plan for an open call for applications so that they could come in with a request when they are ready instead of forcing them into a premature application for funding because the window might not open for another year or two.

One bit of trivia drove home how difficult the entire process of moving innovative therapies into the clinic can be. Paul Laikind, CEO of ViaCyte, the company CIRM has provided more than $50 million to develop a diabetes therapy, noted the size of the application they sent to the FDA: 8,500 pages. Kind of says it all.

Don Gibbons

What everybody needs to know about CIRM: where has the money gone

It’s been almost ten years since the voters of California created the Stem Cell Agency when they overwhelmingly approved Proposition 71, providing us $3 billion to help fund stem cell research.

In the last ten years we have made great progress – we will have ten projects that we are funding in or approved to begin clinical trials by the end of this year, a really quite remarkable achievement – but clearly we still have a long way to go. However, it’s appropriate as we approach our tenth anniversary to take a look at how we have spent the money, and how much we have left.

Of the $3 billion Prop 71 generates around $2.75 billion was set aside to be awarded to research, build laboratories etc. The rest was earmarked for things such as staff and administration to help oversee the funding and awards.

Of the research pool here’s how the numbers break down so far:

  • $1.9B awarded
  • $1.4B spent
  • $873M not awarded

So what’s the difference between awarded and spent? Well, unlike some funding agencies when we make an award we don’t hand the researcher all the cash at once and say “let us know what you find.” Instead we set a series of targets or milestones that they have to reach and they only get the next installment of the award as they meet each milestone. The idea is to fund research that is on track to meet its goals. If it stops meetings its goals, we stop funding it.

Right now our Board has awarded $1.9B to different institutions, companies and researchers but only $1.4B of that has gone out. And of the remainder we estimate that we will get around $100M back either from cost savings as the projects progress or from programs that are cancelled because they failed to meet their goals.

So we have approximately $1B for our Board to award to new research, which means at our current rate of spending we’ll have enough money to be able to continue funding new projects until around 2020. Because these are multi-year projects we will continue funding them till around 2023 when those projects end and, theoretically at least, we run out of money.

But we are already working hard to try and ensure that the well doesn’t run dry, and that we are able to develop other sources of funding so we can continue to support this work. Without us many of these projects are at risk of dying. Having worked so hard to get these projects to the point where they are ready to move out of the laboratory and into clinical trials in people we don’t want to see them fall by the wayside for lack of support.

Of the $1.9B we have awarded, that has gone to 668 awards spread out over five different categories:

CIRM spending Oct 2014

Increasingly our focus is on moving projects out of the lab and into people, and in those categories – called ‘translational’ and ‘clinical’ – we have awarded almost $630M in funding for more than 80 active programs.

Untitled

Under our new CIRM 2.0 plan we hope to speed up the number of projects moving into clinical trials. You can read more about how we plan on doing there in this blog.

It took Jonas Salk almost 15 years to develop a vaccine for polio but those years of hard work ended up saving millions of lives. We are working hard to try and achieve similar results on dozens of different fronts, with dozens of different diseases. That’s why, in the words of our President & CEO Randy Mills, we come to work every day as if lives depend on us, because lives depend on us.

Stem Cell Stories that Caught our Eye: Skin Cells to Brain Cells in One Fell Swoop, #WeAreResearch Goes Viral, and Genes Helps Stem Cells Fight Disease

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Building a Better Brain Cell. Thanks to advances in stem cell biology, scientists have found ways to turn adult cells, such as skin cells, back into cells that closely resemble embryonic stem cells. They can then coax them into becoming virtually any cell in the body.

But scientists have more recently begun to devise ways to change cells from one type into another without first having to go back to a stem cell-like state. And now, a team from Washington University in St. Louis has done exactly that.

As reported this week in New Scientist, researcher Andrew Yoo and his team used microRNAs—a type of ‘signaling molecule’—to reprogram adult human skin cells into medium spiny neurons(MSNs), the type of brain cell involved in the deadly neurodegenerative condition, Huntington’s disease.

“Within four weeks the skin cells had changed into MSNs. When put into the brains of mice, the cells survived for at least six months and made connections with the native tissue,” explained New Scientist’s Clare Wilson.

This process, called ‘transdifferentiation,’ has the potential to serve as a faster, potentially safer alternative to creating stem cells.

#WeAreResearch Puts a Face on Science. The latest research breakthroughs often focus on the science itself, and deservedly so. But exactly who performed that research, the close-knit team who spent many hours at the lab bench and together worked to solve a key scientific problem, can sometimes get lost in the shuffle.

#WeAreResearch submission from The Thomson Lab at the University of California, San Francisco. This lab uses optogenetics, and RNAseq to probe cell fate decisions.

#WeAreResearch submission from The Thomson Lab at the University of California, San Francisco. This lab uses optogenetics, and RNAseq to probe cell fate decisions.

Enter #WeAreResearch, a new campaign led by the American Society for Cell Biology (ASCB) that seeks to show off science’s more ‘human side.’

Many California-based stem cell teams have participated—including CIRM grantee Larry Goldstein and his lab!

Check out the entire collection of submissions and, if you’re a member of a lab, submit your own. Prizes await the best submissions—so now’s your chance to get creative.

New Genes Help Stem Cells Fight Infection. Finally, UCLA scientists have discovered how stem cells ‘team up’ with a newly discovered set of genes in order to stave off infection.

Reporting in the latest issue of the journal Current Biology, and summarized in a UCLA news release, Julian Martinez-Agosto and his team describe how two genes—adorably named Yorkie and Scalloped—set in motion a series of events, a molecular Rube Goldberg device, that transforms stem cells into a type of immune system cell.

Importantly, the team found that without these genes, the wrong kind of cell gets made—meaning that these genes play a central role in the body’s healthy immune response.

Mapping out the complex signaling patterns that exist between genes and cells is crucial as researchers try and find ways to, in this case, improve the body’s immune response by manipulating them.