Bridging the gap: training scientists to speak everyday English

Getting a start in your chosen career is never easy. Without experience it’s hard to get a job. And without a job you can’t get experience. That’s why the CIRM Bridges program was created, to help give undergraduate and Master’s level students a chance to get the experience they need to start a career in stem cell research.

Last week our governing Board approved a new round of funding for this program, ensuring it will continue for another 5 years.

But we are not looking to train just any student; we are looking to recruit and retain students who reflect the diversity of California, students who might not otherwise have a chance to work in a world-class stem cell research facility.

Want to know what that kind of student looks like? What kind of work they do? Well, the Bridges program at City College of San Francisco recently got its latest group of Bridges students to record an “elevator pitch”; that’s a short video where they explain what they do and why it’s important, in language anyone can understand.

They do a great job of talking about their research in a way that’s engaging and informative; no easy matter when you are discussing things as complex as using stem cells to test whether everyday chemicals can have a toxic impact on the developing brain, or finding ways to turn off the chromosome that causes Down’s syndrome.

Regular readers of the CIRM blog know we are huge supporters of anything that encourages scientists to be better communicators. We feel that anyone who gets public funding for their work has an obligation to be able to explain that work in words the public can understand. This is not just about being responsive, there’s also a certain amount of self-interest here. The better the public understands the work that scientists do, and how that might impact their health, the more they’ll support that work.

That’s why one of the new elements we have added to the Bridges program is a requirement for the students to engage in community outreach and education. We want them to be actively involved in educating diverse communities around California about the importance of stem cell research and the potential benefits for everyone.

We have also added a requirement for the students to be directly engaged with patients. Too often in the past students studied solely in the lab, learning the skills they’ll need for a career in science. But we want them to also understand whom these skills will ultimately benefit; people battling deadly diseases and disorders. The best way to do that is for the students to meet these people face-to-face, at a bone marrow drive or at a health fair for example.

When you have seen the face of someone in need, when you know their story, you are more motivated to find a way to help them. The research, even if it is at a basic level, is no longer about an abstract idea, it’s about someone you know, someone you have met.

Improving process drives progress in stem cell research

shutterstock_212888935Process is not a sexy word. No one gets excited thinking about improving a process. Yet behind every great idea, behind every truly effective program is someone who figured out a way to improve the process, to make that idea not just work, but work better.

It’s not glamorous. Sometimes it’s not even pretty. But it is essential.

Yesterday in Oakland our governing Board approved two new concepts to improve our process, to help us fund research in a way that is faster, smarter and ultimately helps us better meet our mission of accelerating the development of stem cell therapies for patients with unmet medical needs.

The new concepts are for Discovery – the earliest stage of research – and the Translational phase, a critical step in moving promising therapies out of the lab and toward clinical trials where they can be tested in people.

In a news release C. Randal Mills, Ph.D., CIRM’s President and CEO, said that these additions built on the work started when the agency launched CIRM 2.0 in January for the clinical phase of research:

“What makes this approach different is that under CIRM 2.0 we are creating a pathway for research, from Discovery to Translational and Clinical, so that if a scientist is successful with their research at one level they are able to move that ahead into the next phase. We are not interested in research just for its own sake. We are interested in research that is going to help us help patients.”

In the Discovery program, for example, we will now be able to offer financial incentives to encourage researchers who successfully complete their work to move it along into the Translational phase – either themselves or by finding a scientific partner willing to take it up and move it forward.

This does a number of things. First it helps create a pipeline for the most promising projects so ideas that in the past might have stopped once the initial study ended now have a chance to move forward. Obviously our hope is that this forward movement will ultimately lead to a clinical trial. That won’t happen with every research program we fund but this approach will certainly increase the possibility that it might.

There’s another advantage too. By scheduling the Discovery and Translational awards more regularly we are creating a grant system that has more predictability, making it easier for researchers to know when they can apply for funding.

We estimate that each year there will be up to 50 Discovery awards worth a total of $53 million; 12 Translation awards worth a total of $40 million; and 12 clinical awards worth around $100 million. That’s a total of more than $190 million every year for research.

This has an important advantage for the stem cell agency too. We have close to $1 billion left in the bank so we want to make sure we spend it as wisely as we can.

As Jonathan Thomas, Ph.D. J.D, the Chair of our Board, said, having this kind of plan helps us better plan our financial future;

“Knowing how often these programs are going to be offered, and how much money is likely to be awarded means the Board has more information to work with in making decisions on where best to allocate our funding.”

The Board also renewed funding for both the Bridges and SPARK (formerly Creativity) programs. These are educational and training programs aimed at developing the next generation of stem cell scientists. The Bridges students are undergraduate or Master’s level students. The SPARK students are all still in high school. Many in both groups come from poor or low-income communities. This program gives them a chance to work in a world-class stem cell research facility and to think about a career in science, something that for many might have been unthinkable without Bridges or SPARK.

Process isn’t pretty. But for the students who can now think about becoming a scientist, for the researchers who can plan new studies, and for the patients who can now envision a potential therapy getting into clinical trials, that process can make all the difference.

Conference provides critical connections between clinical projects and investors

Having a mission like CIRM’s, which calls on us to develop therapies for unmet medical needs, clearly means we cannot sit back and marvel at all the great projects we have in the pipeline. We have to deliver commercial products available to all patients in need. And that cannot be done without additional investors.

The Alliance for Regenerative Medicine (ARM) takes that maxim seriously as well. The international advocacy organization, of which CIRM was a founding member five years ago, will host its third annual RegenMed Investor Day in New York City next Wednesday March 25.
ARM-logo-sm
During the full-day event 32 companies will present their progress to a wide array of investors. Traditional venture capital investors will be represented alongside investors from institutions and multinational pharmaceutical giants.

The day will be rounded out with three panel discussions and two fireside chats with market research analysts, company CEOs and leading clinicians. The fireside chat during lunch will feature CIRM President and CEO Dr. C. Randall Mills who will talk about public-private partnerships making joint investments to bring therapies to patients, and how the revised work plan we call CIRM 2.0 will make it easier for companies to work together with CIRM to advance promising therapies.

Getting just the eleven projects CIRM is funding in clinical trials today through to commercial products will require a broad mix of funding partnerships. With our portfolio and that of the industry as a whole growing rapidly, conferences like this one are critical.

What…exactly…do you do? How 12 year olds helped me learn how to talk about science

Jackie Ward in her lab at UC San Diego

Jackie Ward in her lab at UC San Diego

Jackie Ward is a graduate student at the University of California, San Diego (UCSD), and received a training grant from CIRM while studying for her PhD. At UCSD Jackie uses stem cells as a model to study rare neurodegenerative diseases in the lab of Albert La Spada. Her work as a PhD student focuses on a rare form of inherited neurodegeneration called spinocerebellar ataxia. From time to time Jackie shares her experiences with us. Here’s her latest.

One of the many questions I get over my annual trek home during the holidays is “What…exactly…do you do?” This is usually couched somewhere between “have you learned to surf yet?” and “how’s the weather?” In the past, I preferred to talk about my surfing skills (very minimal) and the sunshine (always amazing, thanks San Diego), more than what I do every day. It’s amazing how this seemingly innocuous question can be the most difficult to answer. Because we’re used to presenting our work in lecture formats or lengthy scientific papers, summing it up in three sentences of non-jargon can be difficult. A similar thought was outlined recently at UCSD, by the actor and science advocate Alan Alda. The title of his presentation, “Getting the Public Past a Blind Date with Science,” highlighted the uncomfortable feelings many people have towards science. Like any relationship, sustained communication and trust is necessary for success. Unfortunately, on many scientific issues, that relationship has suffered. As a PhD student, I am constantly surrounded by my peers—other scientists who know exactly what I mean when I use terms like “reprogramming” or “retinal photoreceptor.” While these scientist-to-scientist conversations are vital to our work, we often forget that it is equally, or perhaps more, important to have conversations with people who have no idea what we do. As any CIRM- or NIH-funded lab is well aware, a significant portion of our funding comes from taxpayer dollars. It’s these “investors” to whom we ultimately report back. This conversation is challenging. Not only do we have to change our language, we have to remember what it was like to not know everything we do now. The best practice I’ve gotten in this regard is talking to kids. Seventh graders seem to be less afraid to ask you questions or call you out on something that doesn’t make sense to them. (Now that I think about it, it might be beneficial to include some 13-year-olds on our grant review panels.) My graduate program allows students to fulfill their teaching requirement by doing science outreach activities. I chose to do this with the Salk Institute’s mobile science lab, where real scientists are connected to local middle schools to discuss their jobs and lead hands-on science labs. I didn’t realize how valuable this experience was until it started to become easier for me to answer the “what do you do” question. I changed the words I use. I replaced the word “reprogram” with “rewind” and “retinal photoreceptor” with “eye cell.” Unexpectedly, I think this practice helped me become a better communicator when I talk to other scientists now too. I try not to assume a certain level of knowledge with anybody. While I still love talking about pretending to surf and gloating about the weather, I’ve become more fond of the “what do you do” question. I hope to only improve with time. It’ll be my small contribution for getting science to that second date.

Strong ARMing regenerative medicine; bold thoughts on a bright future

It’s a time-honored tradition for the President of the United States to begin his State of the Union speech by saying “The state of our union is strong.” Well, Ed Lanphier, the incoming Chairman of the Alliance for Regenerative Medicine (ARM) – the industry trade group – took a leaf out of that book in kicking off the annual “State of the Industry Briefing” in San Francisco yesterday. He said the state of the industry is not just strong, but getting stronger all the time.

ARM_State_of_the_Industry_Briefing_2015_And he had the facts to back him up. In monetary terms alone he said the regenerative medicine field raised $6.3 billion in 2014, compared to $2.3 billion in 2013.

He pointed to the growing number of partnerships and alliances between big pharmaceutical businesses and smaller biotech and cell therapy companies as a sign that deep pocket investors recognize the potential in the field, saying “Big Pharma sees the value of these outcomes and the maturation of these pipelines.”

Lanphier also highlighted the more than 375 clinical trials that were underway last year, and the fact that more than 60 regenerative medicine products have been approved.

But he also pointed out that the field as a whole faces some big challenges in the coming years. One of the most pressing could be pricing. He cited criticisms that exploded over medicines like Gilead’s hepatitis C treatment Sovaldi because of its $1,000-a-day price tag. Lanphier warned that regenerative medicine could face similar criticisms when some of its therapies are finally approved, because they are likely to be very expensive (at least to start with). He said we need to start thinking now how to talk to patients and the public in general about this, so they understand why these treatments are so expensive, but may be cheaper in the long run if they cure rather than just treat disease.

As if to reinforce that message the first panel discussion in the briefing focused on the gene therapy and genome-editing field. Panel members talked about the high expectations for this field in the 1990’s but that it took decades of work before we finally started to see those early hopes turn into reality.

Jeffrey Walsh, the COO of bluebird bio talked about: “The excitement about gene therapy in the early days… and then having to survive the 15-20 years after that in the very challenging days for gene therapy.”

Katrine Bosley, the CEO of Editas Medicine, says those challenges have not gone away and that the field will have to address some big issues in the future. Among those are working with regulatory agencies such as the Food and Drug Administration (FDA) to win approval for completely new ways of treating disease. Another is anticipating the kinds of ethical issues they will have to address in using these techniques to alter genes.

Questions about the regulatory process also popped up in the second panel, which focused more on advanced therapy and drug development. Paul Laikind of ViaCyte (whose clinical trial in type 1 diabetes we are funding) highlighted those challenges saying: “Making the cells the way you want is not rocket science; but doing it in a way that meets regulatory requirements is rocket science.”

Paul Wotton, the President and CEO of Ocata Therapeutics (formerly called ACT) echoed those sentiments:

“We are pioneering things here and it’s the pioneers who often end up with arrows in their back, so you really have to spend a lot of time working with the FDA and other regulatory bodies to make sure you are having all the right conversations ahead of time.”

But while everyone freely acknowledged there are challenging times ahead, the mood was still very positive, perhaps best summed up by C. Randal Mills, the President of CEO of CIRM and moderator of the panel, when he said:

“I find it remarkable where we are in this space today – with this number of cutting edge companies in clinical trials. Stem cell therapy is becoming a reality, it’s no longer a place where only a foolish few dare to go in; it’s a reality. There is a change in the practice of medicine that is coming and we are all fortunate to be a part of it.”

Stem Cell Stories that Caught Your Eye: The Most Popular Stem Cellar Stories of 2014

2014 marked an extraordinary year for regenerative medicine and for CIRM. We welcomed a new president, several of our research programs have moved into clinical trials—and our goal of accelerating treatments for patients in need is within our grasp.

As we look back we’d like to revisit The Stem Cellar’s ten most popular stories of 2014. We hope you enjoyed reading them as much as we did reporting them. And from all of us here at the Stem Cell Agency we wish you a Happy Holidays and New Year.

10. UCSD Team Launches CIRM-Funded Trial to Test Safety of New Leukemia Drug

9. Creating a Genetic Model for Autism, with a Little Help from the Tooth Fairy

8. A Tumor’s Trojan Horse: CIRM Researchers Build Nanoparticles to Infiltrate Hard-to-Reach Tumors

7. CIRM funded therapy for type 1 diabetes gets FDA approval for clinical trial

6. New Videos: Living with Crohn’s Disease and Working Towards a Stem Cell Therapy

5. Creativity Program Students Reach New Heights with Stem Cell-Themed Rendition of “Let it Go”

4. Scientists Reach Yet Another Milestone towards Treating Type 1 Diabetes

3. Meet the Stem Cell Agency President C. Randal Mills

2. Truth or Consequences: how to spot a liar and what to do once you catch them

1. UCLA team cures infants of often-fatal “bubble baby” disease by inserting gene in their stem cells; sickle cell disease is next target

December ICOC Board Meeting to Begin Soon

The December ICOC Board Meeting begins this morning in Berkeley, CA.

The complete agenda can be found here. Dude to inclement weather our Spotlight on Disease has been canceled.

For those not able to attend, you are welcome to dial in:

To join the event as an attendee
——————————————————-
1. Go to https://cirm.webex.com/mw0307l/mywebex/default.do?nomenu=true&siteurl=cirm&service=6&rnd=0.3004049356896069&main_url=https%3A%2F%2Fcirm.webex.com%2Fec0606l%2Feventcenter%2Fevent%2FeventAction.do%3FtheAction%3Dlandingfrommail%26confViewID%3D2023263422%26%26EMK%3D4832534b0000000206e16422b6688520d75b860933effb35ce2c41b56594ba5351fdb8c0a969dd92%26email%3Dacheung%2540cirm.ca.gov%26encryptTicket%3Daee20fe734ccdae68884f9fe07b3197e%26%26siteurl%3Dcirm

2. Click “Join Now”.

——————————————————-
To join the teleconference only
——————————————————-
Dial in: (800) 398-9389

Confirmation Number: 346314

To access the live event or archive, use this URL:
https://im.csgsystems.com/cgi-bin/confCast

Enter Conference ID# 346314

[Members of the Public will be invited to provide testimony before or during consideration of each item. Makers of public comments are asked to limit their testimony to three (3) minutes.]

Stem cells and professional sports: a call for more science and less speculation

In the world of professional sports, teams invest tens of millions of dollars in players. Those players are under intense pressure to show a return on that investment for the team, and that means playing as hard as possible for as long as possible. So it’s no surprise that players facing serious injuries will often turn to any treatment that might get them back in the game.

image courtesy Scientific American

image courtesy Scientific American

A new study published last week in 2014 World Stem Cell Report (we blogged about it here) highlighted how far some players will go to keep playing, saying at least 12 NFL players have undergone unproven stem cell treatments in the last five years. A session at the recent World Stem Cell Summit in San Antonio, Texas showed that football is not unique, that this is a trend in all professional sports.

Dr. Shane Shapiro, an orthopedic surgeon at the Mayo Clinic, says it was an article in the New York Times in 2009 about two of the NFL players named in the World Stem Cell Report that led him to becoming interested in stem cells. The article focused on two members of the Pittsburgh Steelers team who were able to overcome injuries and play in the Super Bowl after undergoing stem cell treatment, although there was no direct evidence the stem cells caused the improvement.

“The next day, the day after the article appeared, I had multiple patients in my office with copies of the New York Times asking if I could perform the same procedure on them.”

Dr. Shapiro had experienced what has since become one of the driving factors behind many people seeking stem cell therapies, even ones that are unproven; the media reports high profile athletes getting a treatment that seems to work leading many non-athletes to want the same.

“This is not just about high profile athletes it’s also about older patients, weekend warriors and all those with degenerative joint disease, which affects around 50 million Americans. Currently for a lot of these degenerative conditions we don’t have many good non- surgical options, basically physical therapy, gentle pain relievers or steroid injections. That’s it. We have to get somewhere where we have options to slow down this trend, to slow down the progression of these injuries and problems.”

Shapiro says one of the most popular stem cell-based approaches in sports medicine today is the use of plasma rich platelets or PRP. The idea behind it makes sense, at least in theory. Blood contains platelets that contain growth factors that have been shown to help tissue heal. So injecting a patient’s platelets into the injury site might speed recovery and, because it’s the patient’s own platelets, the treatment probably won’t cause any immune response or prove to be harmful.

That’s the theory. The problem is few well-designed clinical trials have been done to see if that’s actually the case. Shapiro talked about one relatively small, non-randomized study that used PRP and in a 14-month follow-up found that 83% of patients reported feeling satisfied with their pain relief. However, 84% of this group did not have any visible improved appearance on ultrasound.

He is now in the process of carrying out a clinical trial, approved by the Food and Drug Administration (FDA), using bone marrow aspirate concentrate (BMAC) cells harvested from the patient’s own bone marrow. Because those cells secrete growth factors such as cytokines and chemokines they hope they may have anti-inflammatory and regenerative properties. The cells will be injected into 25 patients, all of whom have arthritic knees. They hope to have results next year.

Dr. Paul Saenz is a sports medicine specialist and the team physician for the San Antonio Spurs, the current National Basketball Association champions. He says that sports teams are frequently criticized for allowing players to undergo unproven stem cell treatments but he says it’s unrealistic to expect teams to do clinical studies to see if these therapies work, that’s not their area of expertise. But he also says team physicians are very careful in what they are willing to try.

“As fervent as we are to help bring an athlete back to form, we are equally fervent in our desire not to harm a $10 million athlete. Sports physicians are very conservative and for them stem cells are never the first thing they try, they are options when other approaches have failed.”

Saenz said while there are not enough double blind, randomized controlled clinical trials he has seen many individual cases, anecdotal evidence, where the use of stem cells has made a big difference. He talked about one basketball player, a 13-year NBA veteran, who was experiencing pain and mobility problems with his knee. He put the player on a biologic regimen and performed a PRP procedure on the knee.

“What we saw over the next few years was decreased pain, and a dramatic decrease in his reliance on non-steroidal anti inflammatory drugs. We saw improved MRI findings, improved athletic performance with more time on court, more baskets and more rebounds.”

But Saenz acknowledges that for the field to advance anecdotal stories like this are not enough, well-designed clinical trials are needed. He says right now there is too much guesswork in treatments, that there is not even any agreement on best practices or standardized treatment protocols.

Dr. Shapiro says for too long the use of stem cells in sports medicine has been the realm of individual physicians or medical groups. That has to change:

“If we are ever to move forward on this it has to be opened up to the scientific community, we have to do the work, do the studies, complete the analysis, open it up to our peers, report it in a reputable journal. If we want to treat the 50 million Americans who need this kind of therapy we need to go through the FDA approval process. We can’t just continue to treat the one patient a month who can afford to pay for all this themselves. “