Stem cell stories that caught our eye: correcting cystic fibrosis gene, improving IVF outcome, growing bone and Dolly

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Cystic Fibrosis gene corrected in stem cells. A team at the University of Texas Medical School at Houston corrected the defective gene that causes cystic fibrosis in stem cells made from the skin of cystic fibrosis patients. In the long term the advance could make it possible to grow new lungs for patients with genes that match their own—with one life-saving exception—and therefore avoid immune rejection. But, the short-term outcome will be a model for the disease that provides tools for evaluating potential new drug therapies.

“We’ve created stem cells corrected for the cystic fibrosis mutation that potentially could be utilized therapeutically for patients,” said Brian Davis the study’s senior author in a university press release. “While much work remains, it is possible that these cells could one day be used as a form of cell therapy.”

The researchers made the genetic correction in the stem cells using the molecular scissors known as zing finger nucleases. Essentially they cut out the bad gene and pasted in the correct version.

Stem cell researchers boost IVF. Given all the ethical issues raised in the early years of embryonic stem cell research it is nice to be able to report on work in the field that can boost the chances of creating a new life through in vitro fertilization (IVF). Building on earlier work at Stanford a CIRM-funded team there has developed a way to detect chromosome abnormalities in the embryo within 30 hours of fertilization.

Chromosomal abnormalities account for a high percent of the 60 to 70 percent of implanted embryos that end up in miscarriage. But traditional methods can’t detect those chromosomal errors until day five or six and clinicians have found that embryos implant best three to four days post fertilization. This new technique should allow doctors to implant only the embryos most likely to survive.

“A failed IVF attempt takes an emotional toll on a woman who is anticipating a pregnancy as well as a financial toll on families, with a single IVF treatment costing thousands and thousands of dollars per cycle. Our findings also bring hope to couples who are struggling to start a family and wish to avoid the selection and transfer of embryos with unknown or poor potential for implantation,” explained Shawn Chavez who led the team and has since moved to Oregon Health Sciences University.

The study, which used recent advanced technology in non-invasive imaging, was described in a press release from Oregon.

Fun TED-Ed video shows how to grow bone. Medical Daily published a story this week about a team that had released a TED-Ed video earlier this month on how to grow a replacement bone on the lab. The embedded video provides a great primer on how we normally grow and repair bone in our bodies and how that knowledge can inform efforts to grow bone in the lab.

In particular, the story walks through a scenario of a patient with a bone defect too large for our normal repair mechanisms to patch up. It describes how scientist can take stem cells from fat, use 3D printers to mold a scaffold the exact shape of the defect, and culture the stem cells on the scaffold in the lab to create the needed bone.

The video and story reflect the work of New York-based company EpiBone and its tissue engineer CEO Nina Tandon.

Happy birthday Dolly (the sheep). July 5 marked the 19th anniversary of the first cloned mammal, Dolly the sheep in Scotland. For fans of the history of science, MotherBoard gives a good brief history of the resulting kerfuffle and a reminder that Dolly was not very healthy and the procedure was not and is not ready to produce cloned human.

Dolly's taxidermied remains are in a museum in Scotland. She died after only six years, about half the normal life expectancy.

Dolly’s taxidermied remains are in a museum in Scotland. She died after only six years, about half the normal life expectancy.

Stem cell stories that caught our eye: a new type of stem cell, stomach cancer and babies—stem cell assisted and gene altered

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

New type of stem cell easier to grow, more versatile. Both the professional scientific media and the lay science media devoted considerable ink and electrons this week to the announcement of a new type of stem cell—and not just any stem cell, a pluripotent one, so it is capable of making all our tissues. On first blush it appears to be easier to grow in the lab, possibly safer to use clinically, and potentially able to generate whole replacement organs.

The newly found stem cells (shown in green) integrating into a mouse embryo.

The newly found stem cells (shown in green) integrating into a mouse embryo.

How a team at the Salk Institute made the discovery was perhaps best described in the institute’s press release picked up by HealthCanal. They sought to isolate stem cells from a developing embryo after the embryo had started to organize itself spatially into compartments that would later become different parts of the body. By doing this they found a type of stem cell that was on the cusp of maturing into specific tissue, but was still pluripotent. Using various genetic markers they verified that these new cells are indeed different from embryonic stem cells isolated at a particular time in development.

The Scientist did the best job of explaining why these cells might be better for research and why they might be safer clinically. They used outside experts, including Harvard stem cell guru George Daly and CIRM-grantee from the University of California, Davis, Paul Knoepfler, to explain why. Paul described the cells this way:

“[They] fit nicely into a broader concept that there are going to be ‘intermediate state’ stem cells that don’t fit so easily into binary, black-and-white ways of classifying [pluripotent cells].”

The Verge did the best job of describing the most far-reaching potential of the new cells. Unlike earlier types of human pluripotent cells, these human stem cells, when transplanted into a mouse embryo could differentiate into all three layers of tissue that give rise to the developing embryo. This ability to perform the full pluripotent repertoire in another species—creating so called chimeras—raises the possibility of growing full human replacement organs in animals, such as pigs. The publication quotes CIRM science officer Uta Grieshammer explaining the history of the work in the field that lead up to this latest finding.

Stem cells boost success in in vitro fertilization.  Veteran stem cell reporter and book author Alice Park wrote about a breakthrough in Time this week that could make it much easier for older women to become pregnant using in vitro fertilization. The new technique uses the premise that one reason older women’s eggs seem less likely to produce a viable embryo is they are tired—the mitochondria, the tiny organs that provide power to cells, just don’t have it in them to get the job done.

The first baby was born with the assistance of the new procedure in Canada last month. The process takes a small sample of the mother-to-be’s ovarian tissue, isolates egg stem cells from it, extracts the mitochondria from those immature cells and then injects them into the woman’s mature, but tired eggs. Park reports that eight women are currently pregnant using the technique. She quotes the president of the American Society of Reproductive Medicine on the potential of the procedure:

“We could be on the cusp of something incredibly important. Something that is really going to pan out to be revolutionary.”

But being the good reporter that she is, Park also quotes experts that note no one has done comparison studies to see if the process really is more successful than other techniques.

Why bug linked to ulcers may cause cancer. The discovery of the link between the bacteria H. pylori and stomach ulcers is one of my favorite tales of the scientific process. When Australian scientists Barry Marshall and Robin Warren first proposed the link in the early 1980s no one believed them. It took Marshall intentionally swallowing a batch of the bacteria, getting ulcers, treating the infection, and the ulcers resolving, before the skeptics let up. They went on to win the Nobel Prize in 1995 and an entire subsequent generation of surgeons no longer learned a standard procedure used for decades to repair stomach ulcers.

In the decades since, research has produced hints that undiagnosed H. pylori infection may also be linked to stomach cancer, but no one knew why. Now, a team at Stanford has fingered a likely path from bacteria to cancer. It turns out the bacteria interacts directly with stomach stem cells, causing them to divide more rapidly than normal.

They found this latest link through another interesting turn of scientific process. They did not feel like they could ethically take samples from healthy individuals’ stomachs, so they used tissue discarded after gastric bypass surgeries performed to treat obesity. In those samples they found that H. pylori clustered at the bottom of tiny glands where stomach stem cells reside. In samples positive for the bacteria, the stem cells were activated and dividing abnormally. HealthCanal picked up the university’s press release on the work.

Rational balanced discussion on gene-edited babies.   Wired produced the most thoughtful piece I have read on the controversy over creating gene-edited babies since the ruckus erupted April 18 when a group of Chinese scientists published a report that they had edited the genes of human eggs. Nick Stockton wrote about the diversity of opinion in the scientific community, but most importantly, about the fact this is not imminent. A lot of lab work lies between now and the ability to create designer babies. Here is one particular well-written caveat:

“Figuring out the efficacy and safety of embryonic gene editing means years and years of research. Boring research. Lab-coated shoulders hunched over petri dishes full of zebrafish DNA. Graduate students staring at chromatographs until their eyes ache.”

He discusses the fears of genetic errors and the opportunity to layer today’s existing inequality with a topping of genetic elitism. But he also discusses the potential to cure horrible genetic diseases and the possibility that all those strained graduate student eyes might bring down the cost to where the genetic fixes might be available to everyone, not just the well heeled.

The piece is worth the read. As he says in his closing paragraph, “be afraid, be hopeful, and above all be educated.”

What everybody needs to know about CIRM: where has the money gone

It’s been almost ten years since the voters of California created the Stem Cell Agency when they overwhelmingly approved Proposition 71, providing us $3 billion to help fund stem cell research.

In the last ten years we have made great progress – we will have ten projects that we are funding in or approved to begin clinical trials by the end of this year, a really quite remarkable achievement – but clearly we still have a long way to go. However, it’s appropriate as we approach our tenth anniversary to take a look at how we have spent the money, and how much we have left.

Of the $3 billion Prop 71 generates around $2.75 billion was set aside to be awarded to research, build laboratories etc. The rest was earmarked for things such as staff and administration to help oversee the funding and awards.

Of the research pool here’s how the numbers break down so far:

  • $1.9B awarded
  • $1.4B spent
  • $873M not awarded

So what’s the difference between awarded and spent? Well, unlike some funding agencies when we make an award we don’t hand the researcher all the cash at once and say “let us know what you find.” Instead we set a series of targets or milestones that they have to reach and they only get the next installment of the award as they meet each milestone. The idea is to fund research that is on track to meet its goals. If it stops meetings its goals, we stop funding it.

Right now our Board has awarded $1.9B to different institutions, companies and researchers but only $1.4B of that has gone out. And of the remainder we estimate that we will get around $100M back either from cost savings as the projects progress or from programs that are cancelled because they failed to meet their goals.

So we have approximately $1B for our Board to award to new research, which means at our current rate of spending we’ll have enough money to be able to continue funding new projects until around 2020. Because these are multi-year projects we will continue funding them till around 2023 when those projects end and, theoretically at least, we run out of money.

But we are already working hard to try and ensure that the well doesn’t run dry, and that we are able to develop other sources of funding so we can continue to support this work. Without us many of these projects are at risk of dying. Having worked so hard to get these projects to the point where they are ready to move out of the laboratory and into clinical trials in people we don’t want to see them fall by the wayside for lack of support.

Of the $1.9B we have awarded, that has gone to 668 awards spread out over five different categories:

CIRM spending Oct 2014

Increasingly our focus is on moving projects out of the lab and into people, and in those categories – called ‘translational’ and ‘clinical’ – we have awarded almost $630M in funding for more than 80 active programs.

Untitled

Under our new CIRM 2.0 plan we hope to speed up the number of projects moving into clinical trials. You can read more about how we plan on doing there in this blog.

It took Jonas Salk almost 15 years to develop a vaccine for polio but those years of hard work ended up saving millions of lives. We are working hard to try and achieve similar results on dozens of different fronts, with dozens of different diseases. That’s why, in the words of our President & CEO Randy Mills, we come to work every day as if lives depend on us, because lives depend on us.

New Videos: Downton Abbey, preeclampsia, and the search for a cure using stem cells

(Downton Abbey Spoiler Alert: skip ahead to the video if you haven’t seen Season 3!)

If you’re one of the estimated 10 million devoted Downton Abbey TV viewers, then you most probably have heard of the word “preeclampsia.” In a heart-wrenching episode from season 3 of the early 20th century British drama, one of the characters dies while giving birth due to the complications of preeclampsia.

A fan myself, I too watched in shock as the plot unfolded. But I was at least comforted by the thought that surely this disease no longer has tragic outcomes today in the early 21st century. Boy was I wrong. As CIRM-grantee Mana Parast pointed out during her Spotlight on Disease presentation to the CIRM Governing Board two weeks ago (now viewable on our website), preeclampsia and related disorders are still a widespread problem for expecting mothers:

“They complicate 5-8% of all pregnancies worldwide, and they cause multiple maternal and neonatal complications. So in fact preeclampsia is the leading cause of maternal mortality in the developed world. It’s also the leading cause of fetal growth restriction and there’s no cure … except to deliver the baby. In fact preeclampsia is the number one cause of induced preterm delivery in the U.S.”

Preeclampsia is often called “the Silent Killer” because the symptoms often arise suddenly in the second half of pregnancy. The main noticeable symptoms for the expectant mother are high blood pressure and high protein levels in the urine, or proteinuria. Silvia Michelazzi, a preeclampsia survivor, shared with the Board her daughter’s birth story:

“My pregnancy, I was thinking, was going well. I knew Mia was a little bit smaller than average but that was pretty much it. But at a doctor’s appointment, it was found out that I had high blood pressure and proteinuria and I was rushed to the hospital and the baby was delivered 48 hours later [at 29 weeks] because there’s really nothing else to do but delivery the baby. I can’t tell you how hard it was to see the baby so small. It turned out she weighed 2 pounds 8 ounces.”

Mia, now three, spent two months in the neonatal intensive care unit but is now doing remarkably well. But some babies aren’t so lucky. They can have intestinal problems, bleeding in their brain, retinopathy of prematurity (a condition that can lead to blindness), and the list goes on. Even when they survive the neonatal stage they still have an increased risk of heart disease and diabetes over the course of their lives. And all of these scary, sometimes fatal complications are basically due to, as Dr. Parast puts it, “just having a bad placenta.”

The placenta is a transient organ that only appears during pregnancy and is critical for exchange of food, blood and oxygen between the mother and fetus. Dr. Parast, a perinatal pathologist at UC San Diego, studies the development of the placenta with the ultimate hope of finding treatments for preeclampsia. If you imagine the early embryo as a tiny hollow ball of cells, it’s the outer cells called trophoblasts that ultimately form the placenta while a clump of cells inside the hollow “ball” go on to form the fetus.

Examination of a preeclamptic placenta after delivery shows that preeclampsia is a disease marked by a malfunction in trophoblast maturation leading to abnormal placenta development. The aim of Dr. Parast’s team is to mimic preeclampsia in the lab but it’s been a tricky disease to model because preeclampsia is unique to primates so experiments in mice is not an option. Instead, with the help of CIRM-funding, Parast’s lab is embarking on a project to bank tissue from preeclamptic placentas and derive trophoblasts using the induced pluripotent stem cell (iPS) technique. With these iPS-derived trophoblasts in hand, the team can screen for drugs that restore proper trophoblast maturation and placental development.

And in a strange twist that you usually only see on a TV show – it turns out that Dr. Matteo Moretto-Zito, a researcher in Parast’s lab, is the father of little Mia. Moretto-Zito had joined the lab shortly before his wife Silvia was diagnosed with preclampsia. He also spoke to the Board and had this to say about his unique perspective:

“I consider myself extremely lucky for two reasons: number one, Mia’s story ended up really well so that is great and reason number two, because I am part of a team that can make a difference.”

Here’s to hoping that Matteo and the entire Parast team make a difference and find a treatment to end preeclampsia complications for future moms and babies.