Stem cell stories that caught our eye: Some good news got a little overplayed on blindness and Alzheimer’s

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Stories on blindness show too much wide-eyed wonder. While our field got some very good news this week when Advanced Cell Technologies (ACT) published data on its first 18 patients treated for two blinding diseases, many of the news stories were a little too positive. The San Diego Union Tribune ran the story from Associated Press writer Maria Cheng who produced an appropriately measured piece. She led with the main point of this early-phase study—the cells implanted seem to be safe—and discussed “improved vision” in half the patients. She did not imply their sight came back to normal. Her third paragraph had a quote from a leading voice in the field Chris Mason of University College London:

“It’s a wonderful first step but it doesn’t prove that (stem cells) work.”

The ACT team implanted a type of cell called RPE cells made from embryonic stem cells. Those cells are damaged in the two forms of blindness tested in this trial, Stargardt’s macular dystrophy and age-related macular degeneration, the leading cause of blindness in the elderly. Some of the patients have been followed for three years after the cell transplants, which provides the best evidence to date that cells derived from embryonic stem cells can be safe. And some of the patients regained useful levels of vision, which with this small study you still have to consider other possible reasons for the improvement, but it is certainly a positive sign.

CIRM funds a team using a different approach to replacing the RPE cells in these patients and they expect to begin a clinical trial late this year

Stem cells create stronger bone with nanoparticles.   Getting a person’s own stem cells to repair bad breaks in their bones certainly seems more humane than hacking out a piece of healthy bone from some place else on their body and moving it to the damaged area. But our own stem cells often can’t mend anything more than minor breaks. So, a team from Keele University and the University of Nottingham in the U.K. laced magnetic nanoparticles with growth factors that stimulate stem cell growth and used external magnets to hold the particles at the site of injury after they were injected.

It worked nicely in laboratory models as reported in the journal Stem Cells Translational Medicine, and reported on the web site benzinga. Now comes the hard step of proving it is safe to test in humans

Stem cells might end chronic shortage of blood platelets. Blood platelets—a staple of cancer therapy because they get depleted by chemotherapy and radiation—too often are in short supply. They can only set on the shelf for five days after a donation. If we could generate them from stem cells, they could be made on demand, but you’d have to make many different versions to match various peoples’ blood type. The latter has been a bit of a moot point since no one has been able to make clinical grade platelets from stem cells.

plateletsA paper published today by Advanced Cell Technologies may have solved the platelet production hurdle and the immune matching all at once. (ACT is having a good week.) They produced platelets in large quantities from reprogrammed iPS type stem cells without using any of the ingredients that make many iPS cells unusable for human therapy. And before they made the platelets, they deleted the gene in the stem cells responsible for the bulk of immune rejection. So, they may have created a so-called “universal” donor.

They published their method in Stem Cell Reports and Reuters picked up their press release. Let’s see if the claims hold up.

Alzheimer’s in a dish—for the second time. My old colleagues at Harvard got a little more credit than they deserved this week. Numerous outlets, including the Boston Globe, picked up a piece by The New York Times’ Gina Kolata crediting them with creating a model of Alzheimer’s in a lab dish for the first time. This was actually done by CIRM-grantee Lawrence Goldstein at the University of California, San Diego, a couple years ago.

But there were some significant differences in what the teams did do. Goldstein’s lab created iPS type stem cells from skin samples of patients who had a genetic form of the disease. They matured those into nerve cells and did see increased secretion of the two proteins, tau and amyloid-beta, found in the nerves of Alzheimer’s patients. But they did not see those proteins turn into the plaques and tangles thought to wreak havoc in the disease. The Harvard team did, which they attributed, in part, to growing the cells in a 3-dimensional gel that let the nerves grow more like they would normally.

The Harvard team, however, started with embryonic stem cells, matured them into nerves, and then artificially introduced the Alzheimer’s-associated gene. They have already begun using the model system to screen existing drugs for candidates that might be able to clear or prevent the plaques and tangles. But they introduced the gene in such a way the nerve cells over express the disease gene, so it is not certain the model will accurately predict successful therapies in patients.

Don Gibbons

The Nose Knows: Stem Cells are Vital Players in Brain Circuits Responsible for Smell

Ah, the smell of coffee! You can thank your olfactory bulb.

Ah, the smell of coffee! You can thank your olfactory bulb.

Ah, the mouth-watering scent of freshly baked bread and the intense aroma of roasted coffee beans. You can thank nerve cells in the front of your brain — in direct contact with your nasal passages — that convert odor molecules in the air into brain signals and generate your perception of those wonderful smells.

Loss of the sense of smell is often one of the earliest symptoms in people stricken with brain disorders such as Parkinson’s and Alzheimer’s. So the study of this part of the brain called the olfactory bulb, that’s responsible for smell perception, is an attractive area of research that could help provide insights into fundamental brain function and its connection to neurodegenerative diseases. Last week, scientists at the National Institutes of Health (NIH) moved the field a step forward by reporting in the Journal of Neuroscience that brain stem cells play a vital role in sustaining the proper brain cell circuitry in the olfactory bulb.

Studies in adult mice have shown that brain stem cells deep inside the brain have the uncanny ability to travel to the olfactory bulb, transform into nerve cells, and set up appropriate circuits with surrounding nerve cells. The NIH team had previously demonstrated that when a nostril is plugged for 20 days in these mouse studies, depriving the olfactory system of stimulation, the nerve cell connections scatter and become very disorganized. But after removing the plug for 40 days the proper connections and patterns are re-established.

The brain stem cells uncanny ability to migrate through the thin rostral stream, transform in to neurons, and make the right connections with surrounding neurons in the olfactory bulb, the large structure in the upper right. (Image credit:  Belluscio Lab, NINDS).

Newly born nerve cells migrate along a thin path and connect up with surrounding nerve cells in the olfactory bulb, the large structure in the upper right. (Image credit: Belluscio Lab, NINDS).

In the current study, the team used genetic engineering techniques to precisely remove only those brain stem cells in adult mice that transform into the olfactory nerve cells. Again when a nostril was plugged the nerve cell connections were disrupted. But this time when the brain stem cells were eliminated and the nose plug removed, the nerve cell connections remained disorganized. This result reveals that the system relies on a replenishing supply of brain stem cells. As senior author Leonardo Belluscio, Ph.D. states in a NIH press release:

“We found that without the introduction of the new neurons, the system could not recover from its disrupted state.”

Even when the brain stem cells were eliminated in mice that were not given the nose block, a deterioration of the olfactory bulb nerve cell network was still observed by the research team. These results turn scientists’ understanding of brain circuits on its head: rather than being mostly stable structures, in this case the olfactory brain circuits appear unstable by default and must continually receive new neurons (from stem cells) to not only restore disrupted connections but also to preserve stable circuits.

Dr. Belluscio reflected on these intriguing results and its implications for neurologic disease:

“This is an exciting area of science. I believe the olfactory system is very sensitive to changes in neural activity and given its connection to other brain regions, it could lend insight into the relationship between olfactory loss and many brain disorders.”

To hear more from Dr. Belluscio about these results, watch this video interview. And for more about the role of stem cells in adult brain circuitry, watch this seminar by UCSF researcher and CIRM grantee Arturo Alvarez-Buylla, PhD.

Cranking it Up to Eleven: Heightened Growth of Neural Stem Cells Linked to Autism-like Behavior

Autism is not one single disease but a suite of many, which is why researchers have long struggled to understand its underlying causes. Often referred to as the Autism Spectrum Disorders, autism has been linked to multiple genetic and environmental factors—different combinations of which can all result in autism or autistic-like behavior.

Could an unusual boost in neural stem cell growth during pregnancy be linked to autistim-like behavior in children?

Could an unusual boost in neural stem cell growth during pregnancy be linked to autitism-like behavior in children?

But as we first reported in last week’s Weekly Roundup, scientists at the University of California, Los Angeles (UCLA) have identified a new factor that can occur during pregnancy and that may be linked to the development of autism-like behavior. These results shed new light on a notoriously murky condition.

UCLA scientist Dr. Harley Kornblum led the study, which was published last week in the journal Stem Cell Reports.

In it, Kornblum and his team describe how inflammation in pregnant mice, known as ‘maternal inflammation’ caused a spike in the production of neural stem cells—cells that one day develop into mature brain cells, such as neurons and glia cells. This abnormal growth, the team argues, led to enlarged brains in the newborn mice and, importantly, autism-like behavior such as decreased vocalization and social behavior, as well as overall increase in anxiety and repetitive behaviors, such as grooming. As Kornblum explained in a news release:

“We have now shown that one way maternal inflammation could result in larger brains and, ultimately, autistic behavior is through the activation of the neural stem cells that reside in the brain of all developing and adult mammals.”

However, Kornblum notes that many environmental factors may cause inflammation during pregnancy—and the inflammation itself is not thought to directly cause autism.

“Autism is a complex group of disorders, with a variety of causes. Our study shows a potential way that maternal inflammation could be one of those contributing factors, even if it is not solely responsible, through interactions with known risk factors.”

These known risk factors include genetic mutations, such as those to a gene called PTEN, which have been shown to increase one’s risk for autism.

Further research by Kornblum’s team further clarified the connection between inflammation and neural stem cell overgrowth. Specifically, they noticed a series of chemical reactions, known as a molecular pathway, appeared to stimulate the growth of neural stem cells in the developing mice. The identification of pathways such as these are vital when exploring new types of therapies—because once you know the pathway’s role in disease, you can then figure out how to change it.

“The discovery of these mechanisms has identified new therapeutic targets for common autism-associated risk factors,” said Dr. Janel Le Belle, the paper’s lead author. “The molecular pathways that are involved in these processes are ones that can be manipulated and possibly even reversed pharmacologically.”

These findings also support previous clinical findings that the roots of autism likely begin in the womb and continue to develop after birth.

One key difference between this work and previous studies, however, was that most studies point to irregularities in the way that neurons are connected as a key factor that leads to autism. This study points to not just a network ‘dysregulation,’ but also perhaps an overabundance of neurons overall.

“Our hypothesis—that one potential means by which autism may develop is through an overproduction of cells in the brain, which then results in altered connectivity—is a new way of thinking about autism.”

Advances in the fields of stem cell biology and regenerative medicine have given new hope to families caring for autistic loved ones. Read more about one such family in our Stories of Hope series. You can also learn more about how CIRM-funded researchers are building our understanding of autism in our recent video: Reversing Autism in the Lab with help from Stem Cells and the Tooth Fairy.

The sparrow’s dying song: a possible path toward natural, stem cell-based repair of human brain diseases

Songbird research? How the heck could studying tweeting birds lead to advancements in human health?

At a first glance, biological research in other organisms like bacteria, yeast, flies, mice and birds can seem frivolous and a waste of taxpayer money. Yet it’s astonishing how we humans share very similar if not identical functions at a cellular level with our fellow creatures on Earth. So unraveling underlying biological processes in less complex animals is essential to better understanding human biology and to finding possible paths for treating human disease.

Gambel's White-crown sparrow: could its song unlock methods for repairing the brain? (photo courtesy Lip Kee, wikimedia commons)

Gambel’s White-crown sparrow: could its song unlock methods for repairing the brain? (photo courtesy Lip Kee, wikimedia commons)

Case in point: research published in the Journal of Neuroscience last week suggests that studying brain stem cells in song birds could one day lead to methods for naturally repairing neurodegenerative disorders such as Alzheimer’s disease in humans.

The University of Washington team behind the report studies the seasonal song behavior of Gambel’s white-crown sparrows. During the spring breeding season, the population of cells in the sparrow’s brain that are responsible for singing double in number. This cell growth helps the bird to be at its peak singing performance for attracting mates and staking its territory. As breeding season recedes, these brain cells die away naturally and the sparrow’s song, no longer needed, deteriorates. When the next spring arrives the brain cells will grow again.

Audio tracing's of the sparrow's song show its degradation after breeding season each year. (T. Larson/Univ. of Washington)

Audio tracings of the sparrow’s song show its degradation after breeding season each year. (image: T. Larson/Univ. of Washington)

The team’s fascinating discovery is that the dying brain cells themselves appear to provide a signal that tells brain stem cells to multiply for the next breeding season. The scientific term for the cell die-off is called programmed cell death, or apoptosis (pronounced A-POP-TOE-SIS). There are chemicals available to block apoptosis signals. And when the research team administered these anti-apoptosis chemicals at the end of the breeding season, there was a significant reduction in newly dividing brain stem cells. This result shows that new brain stem cell growth depends on the death of brain cells associated with song.

The next step in the project is to identify the signal from the dying cells that stimulates new brain stem cell growth. Once identified, that signal could be harnessed to naturally stimulate new brain stem growth to help repair the loss of brain cells seen in aging, Parkinson’s or Alzheimer’s disease.

As he mentions in a university news story, Dr. Eliot Brenowitz, the senior author of the report, is optimistic about their prospects:

“There’s no reason to think what goes on in a bird brain doesn’t also go on in mammal brains, in human brains. As far as we know, the molecules are the same, the pathways are the same, the hormones are the same. That’s the ultimate purpose of all this, to identify these molecular mechanisms that will be of use in repairing human brains.”

To learn about CIRM-funded projects related to neurodegenerative disorders, visit our Alzheimer’s and Parkinson’s online fact sheets.

Cells’ Knack for Hoarding Proteins Inadvertently Kickstarts the Aging Process

Even cells need to take out the trash—mostly damaged or abnormal proteins—in order to maintain a healthy clean environment. And scientists are now uncovering the harmful effects when cells instead begin to hoard their garbage.

Cells' penchant for hoarding proteins may spur the cellular aging process, according to new research.

Cells’ penchant for hoarding proteins may spur the cellular aging process, according to new research. [Labyrinth (1986)]

Aging, on the cellular level is—at its core—the increasing inability for cells to repair themselves over time. As cells begin to break down faster than they can be repaired, the risk of age-related diseases escalates. Cancer, heart disease and neurological conditions such as Alzheimer’s disease are some of aging’s most deadly effects.

As a result, scientists have long searched for ways to give our cells a little help and improve our quality of life as we age. For example, recent research has pointed to a connection between fasting (restricting calories) and a longer lifespan, though the molecular mechanisms behind this connection remain somewhat cryptic.

But now Dr. Daniel Gottschling, a scientist at the Fred Hutchinson Cancer Research Center and an aging expert, has made extraordinary progress toward solving some of the mysteries of aging.

In two studies published this month in the Proceedings of the National Academy of Sciences and eLife, Gottschling and colleagues discover that a particular long-lasting protein builds up over time in certain cell types, causing the buildup of a protein hoard that damages the cell beyond repair.

Clearing out the Cobwebs

Some cells, such as those that make up the skin or that reside in the gut, are continually replenished by a stockpile of adult stem cells. But other cells, such as those found in the eye and brain, last for years, decades and—in some cases—our entire lifetimes.

Within and surrounding these long-lived cells are similarly long-lived proteins which help the cell perform essential functions. For example, the lens of the human eye, which helps focus light, is made up of these proteins that arise during embryonic development and last for a lifetime.

Dr. Daniel Gottschling is looking to unlock the mysteries behind cellular aging.

Dr. Daniel Gottschling is looking to unlock the mysteries behind cellular aging. [Image courtesy of the Fred Hutchinson Cancer Research Center]

“Shortly after you’re born, that’s it, you get no more of that protein and it lives with you the rest of your life,” explained Gottschling.

As a result, if those proteins degrade and die, new ones don’t replace them—the result is the age-related disease called cataracts.

But scientists weren’t exactly sure of the relationship between these dying proteins and the onset of conditions such as cataracts, and other disease related to aging. Did these conditions occur because the proteins were dying? Or rather because the proteins were building up to toxic levels?

So Gottschling and his team set up a series of experiments to find out.

Stashing Trash

They developed a laboratory model by using yeast cells. Interestingly, yeast cells share several key properties with human stem cells, and are often the focus of early-stage research into basic, fundamental concepts of biology.

Like stem cells, yeast cells grow and divide asymmetrically. In other words, a ‘mother’ cell will produce many ‘daughter’ cells, but will itself remain intact. In general, yeast mother cells produce up to 35 daughter cells before dying—which usually takes just a few days.

 Yeast “mother” cells budding and giving birth to newborn “daughter” cells.  [Image courtesy of Dr. Kiersten Henderson / Gottschling Lab]

Yeast “mother” cells budding and giving birth to newborn “daughter” cells.
[Image courtesy of Dr. Kiersten Henderson / Gottschling Lab]

Here, the research team used a special labeling technique that marked individual proteins that exist within and surrounding these mother cells. These microscopic tracking devices then told researchers how these proteins behaved over the entire lifespan of the mother cell as it aged.

The team found a total of 135 long-lived proteins within the mother cell. But what really surprised them was what they found upon closer examination: all but 21 of these 135 proteins appeared to have no function. They appeared to be trash.

“No one’s ever seen proteins like this before [in aging],” said Nathanial Thayer, a graduate student in the Gottschling Lab and lead author of one of the studies.

Added Gottschling, “With the number of different fragments [in the mother cell], we think they’re going to cause trouble. As the daughter yeast cells grow and split off, somehow mom retains all these protein bits.”

This startling discovery opened up an entirely new set of questions, explained Gottschling.

“It’s not clear whether the mother’s trash keeper function is a selfless act designed to give her daughters the best start possible, or if she’s hanging on to them for another reason.”

Hungry, Hoarding Mother Cells

So Gottschling and his team took a closer look at one of these proteins, known as Pma1.

Recent work by the Gottschling Lab found that cells lose their acidity over time, which itself leads to the deterioration of the cells’ primary energy source. The team hypothesized that Pma1 was somehow intricately tied to corresponding levels of pH (high pH levels indicate an acidic environment, while lower pH levels signify a more basic environment).

In the second study published in eLife, led by Postdoctoral Fellow Dr. Kiersten Henderson, the team made several intriguing discoveries about the role of Pma1.

First, they uncovered a key difference between mother and daughter cells: daughter cells are born with no Pma1. As a result, they are far more acidic than their mothers. But when they ramped up Pma1 in the mother cells, the acidity levels in subsequent generations of daughter cells changed accordingly.

“When we boosted levels of the protein, daughter cells were born with Pma1 and became more basic (they had a lower pH), just like their mothers.”

Further examination uncovered the true relationship between Pma1 and these cells. At its most fundamental, Pma1 helps the mother cells eat.

“Pma1 plays a key role in cellular feeding,” said Gottschling. “The protein sits on the surface of cells and helps them take in nutrients from their environment.”

Pma1 gives the mother cell the ability to gorge herself. The more access to food she has, the easier it is for her to produce more daughter cells. By hoarding Pma1, the mother cell can churn out more offspring. Unfortunately, she is also signing her own death certificate—she’s creating a more basic environment that, in the end, proves toxic and contributes to her death.

The hoarding, it turns out, may not all be due to the mother cells’ failure to ‘take out the trash.’ Instead, she wants to keep eating and producing daughters—and hoarding Pma1 allows her to do just that.

“There’s this whole trade off of being able to divide quickly and the negative side is that the individual, the mother, does not get to live as long.”

Together, the results from these two studies provide a huge boost for researchers like Gottschling who are trying to unravel the molecular mysteries of aging. But the process is incredibly intricate, and there will likely be no one simple solution to improving quality of life as we get older.

“The whole issue of aging is so complex that we’re still laying the groundwork of possibilities of how things can go awry,” said Gottschling. “And so we’re still learning what is going on. We’re defining the aging process.”

Stories of Hope: Alzheimer’s Disease

This week on The Stem Cellar we feature some of our most inspiring patients and patient advocates as they share, in their own words, their Stories of Hope.

Adele Miller knew what came next. She had lived it twice already: her father’s unraveling, due to Alzheimer’s disease, and, a few years later, her mother’s journey through the same erasure of mind and memory. So when doctors told her, at age 55, that she, too, had the disease, she remembered her parents’ difficult last years.

Lauren Miller has seen first hand how Alzheimer's can erase a lifetime's worth of memories.

Lauren Miller has seen first hand how Alzheimer’s can erase a lifetime’s worth of memories.

‘Tell no one,’ she told her family. Keep it secret.

“She was ashamed,” her daughter, actress and writer Lauren Miller, recalls. “She was so embarrassed because there’s such a stigma.” And she worried about her family. How would they handle all this? “I asked her once if she was scared,” Lauren says. “She said she wasn’t afraid for herself. But she was afraid for me, and my dad, and my brother. She knew what she’d gone through with her parents.”

Alzheimer’s disease has been a constant in the actress’s family. Perhaps that made her more attuned to the subtle changes that can herald the onset of the disease. At Lauren’s college graduation, she saw the first clues that something was amiss with her mother. She was repeating herself. Not just, “Oh, have I told you this before?” This was different. A few years later, as she and her mother prepared for a party, Lauren was stunned by the changes in her mother’s behavior. Her mother’s memory no longer seemed to function. She kept forgetting that the taco salad was vegetarian. She kept asking over and over where to throw the garbage. Lauren knew that’s not like her mother, a teacher for 35 years. So she sat down with her brother Dan and their dad. It was time to do something for Mom.

“It’s not that my dad wasn’t noticing things. But I don’t think he wanted to admit there was a problem. And he was simply too close to it,” Lauren says.

It took less than five years for Alzheimer’s disease to rob Adele Miller of nearly everything. Before she turned 60, she couldn’t write. She couldn’t speak. She didn’t even recognize her family.

The loss, the sadness, and the anger that Alzheimer’s families feel is compounded by a sense of utter helplessness against a disease that yields to no drug. But Lauren decided she would not be helpless, and in 2011, she and her husband, actor Seth Rogen, launched Hilarity for Charity, which aims to raise Alzheimer’s awareness in young people while also raising funds for the Alzheimer’s Association. This year Hilarity for Charity sponsored its first college fundraisers. It also hosts support groups for under-40 caregivers.

“Seth has the ability to reach an audience that may not know much about Alzheimer’s. His fans are 16 year old boys who aren’t generally the target for Alzheimer’s awareness,” Lauren said. “But he was able to strike a cord with a lot of these young people. We get emails from people who are 16. ‘Thank you for doing this. I felt alone. Now there’s a voice.’ This is considered an old person’s disease, but it’s really not. It affects everyone.”

In December 2013, Lauren, co-writer, producer and star of For a Good Time, Call, joined the CIRM governing Board, the Independent Citizens Oversight Committee, as a patient advocate for Alzheimer’s disease.

“Alzheimer’s research is woefully underfunded by the government, so it’s important to have bold, innovative approaches like CIRM’s to take research to the next level,” Lauren said. “Stem cell research is at the cusp of something life changing. To me, it’s one of the things closest to making a step toward treatment. I jumped at the opportunity to be part of it.”

For information about CIRM-funded Alzheimer’s disease research, visit our Alzheimer’s Fact Sheet. You can read more about Lauren’s Story of Hope on our website.

FDA gives Asterias green light to start CIRM-funded clinical trial in spinal cord injury

This morning Asterias Biotherapeutics announced that they have been cleared by the Food and Drug Administration (FDA) to start a clinical trial using stem cells to treat spinal cord injury. It’s great news, doubly so as we are funding that trial.

1773071

You can read more about the trial in a news release we just sent out.

This trial is a follow-on to the Geron trial that we funded back in 2010 that was halted after 5 patients, not because of any safety concerns but because of a change in Geron’s business strategy.

Katie Sharify was the fifth and final patient enrolled in that trial and treated with the stem cells. Like all of us she was disappointed when the trial was halted. And like all of us she is delighted that Asterias is now taking that work and building on it.

Here’s what Katie had to say when she heard the news:

“Of course, I’m very happy that the trial has been revived. Knowing that the FDA approved the continuation based on the safety data I was a part of is great news. As you know, the trial was halted 2 days before I received the stem cells. A big part of why I ended up participating was because I figured that once the study is revived a bigger sample size (even if just by 1 person) was more valuable than a smaller one. I never regretted my choice to participate but I have doubted whether my contribution actually meant anything. I think now I finally feel a sense of accomplishment because the trial is not only being continued but also progressing in the right direction as a higher dose is going to be used. A lot remains unknown about human embryonic stem cells and that’s exactly why this research is so important. The scientific community is going to have a much greater understanding of these stem cells from the data that will be collected throughout the study and I’m glad to have been a part of this advancement.”

Building a Blueprint for the Human Brain

How does a brain blossom from a small cluster of cells into nature’s most powerful supercomputer? The answer has long puzzled scientists, but with new advances in stem cell biology, researchers are quickly mapping the complex suite of connections that together make up the brain.

UCLA scientists have developed a new system that can map the development of brain cells.

UCLA scientists have developed a new system that can map the development of brain cells.

One of the latest breakthroughs comes from Dr. Daniel Geschwind and his team at the University of California, Los Angeles (UCLA), who have found a way to track precisely how early-stage brain cells are formed. These findings, published recently in the journal Neuron, shed important light on what had long been considered one of biology’s black boxes—how a brain becomes a brain.

Along with co-lead authors and UCLA postdoctoral fellows Drs. Luis de la Torre-Ubieta and Jason Stein, Geschwind developed a new system that measures key data points along the lifetime of a cell, as it matures from an embryonic stem cell into a functioning brain cell, or neuron. These new data points, such as when certain genes are switched on and off, then allow the team to map how the developing human fetus constructs a functioning brain.

Geschwind is particularly excited about how this new information can help inform how complex neurological conditions—such as autism—can develop. As he stated in a news release:

“These new techniques offer extraordinary promise in the study of autism, because we now have an unbiased and genome-wide view of how genes are used in the development of the disease, like a fingerprint. Our goal is to develop new treatments for autism, and this discovery can provide the basis for improved high-efficiency screening methods and open up an enormous new realm of therapeutic possibilities that didn’t exist before.”

This research, which was funded in part by a training grant from CIRM, stands to improve the way that scientists model disease in a dish—one of the most useful applications of stem cell biology. To that end, the research team has developed a program called CoNTEXT that can identify the maturity levels of cells in a dish. They’ve made this program freely available to researchers, in the hopes that others can benefit. Said de la Torre-Ubieta:

“Our hope is that the scientific community will be able to use this particular program to create the best protocols and refine their methods.”

Want to learn more about how stem cell scientists study disease in a dish? Check out our pilot episode of “Stem Cells in your Face.”

Disease in a Dish – That’s a Mouthful: Using Human Stem Cells to Find ALS Treatments

Saying “let’s put some shrimp on the barbie” will whet an Australian’s appetite for barbequed prawns but for an American it conjures up an odd image of placing shrimp on a Barbie doll. This sort of word play confusion doesn’t just happen across continents but also between scientists and the public.

Take “disease in a dish” for example. To a stem cell scientist, this phrase right away describes a powerful way to study human disease in the lab using a Nobel Prize winning technique called induced pluripotent stem cells (iPSC). But to a non-scientist it sounds like a scene from some disgusting sci-fi horror cooking show.

Our latest video Disease in a Dish: That’s a Mouthful takes a lighthearted approach to help clear up any head scratching over this phrase. Although it’s injected with humor, the video focuses on a dreadful disease: amyotrophic lateral sclerosis (ALS). Also known as Lou Gehrig’s disease, it’s a disorder in which nerve cells that control muscle movement die. There are no effective treatments and it’s always fatal, usually within 3 to 5 years after diagnosis.

To explain disease in a dish, the video summarizes a Science Translation Medicine publication of CIRM-funded research reported by the laboratory of Robert Baloh, M.D., Ph.D., director of Cedars-Sinai’s multidisciplinary ALS Program. In the study, skin cells from patients with an inherited form of ALS were used to create nerve cells in a petri dish that exhibit the same genetic defects found in the neurons of ALS patients. With this disease in a dish, the team identified a possible cause of the disease: the cells overproduce molecules causing a toxic buildup that affects neuron function. The researchers devised a way to block the toxic buildup, which may point to a new therapeutic strategy.

In a press release, Clive Svendsen, Ph.D., a co-author on the publication and director of the Cedars-Sinai Regenerative Medicine Institute had this perspective on the results:

“ALS may be the cruelest, most severe neurological disease, but I believe the stem cell approach used in this collaborative effort holds the key to unlocking the mysteries of this and other devastating disorders.”

The video is the pilot episode of Stem Cells in Your Face, which we hope will be an ongoing informational series that helps explain the latest advances toward stem cell-based therapies.

For more information about CIRM-funded ALS research, visit our ALS fact sheet.

A Cool New Way of Raising Funds and Awareness

Raising money to help fight a disease is tough. Trying to raise awareness about the disease can be just as tough. Doing both together is positively masochistic; an experience that is often as rewarding as dumping a bucket of ice cold water over your head.

Have you taken the ALS Ice Bucket Challenge?

Have you taken the ALS Ice Bucket Challenge?

And that’s precisely what a growing number of people around the country are doing to raise awareness about—and money for research into—Amyotrophic Lateral Sclerosis (ALS) also known as Lou Gehrig’s disease. They are dumping buckets of ice-cold water on their head.

It’s called, not surprisingly, the Ice Bucket Challenge. The idea behind it is simple. You dare someone you know to dump a bucket of ice cold water over their head within the next 24 hours or make a donation to help fight ALS. Once the person you have challenged either completes the challenge or makes a donation they then challenge other people—usually three other people—to do the same. And of course there’s nothing stopping you both dumping the water on yourself and making a donation.

The idea started out with people who had ALS and their friends and family but it has quickly spread. Celebrities such as Facebook’s Mark Zuckerberg, singer/actor Justin Timberlake, TV newsman Matt Lauer and even New Jersey Governor Chris Christie have all taken the Challenge. In fact the campaign has gone viral with videos and pictures of people taking the Challenge popping up on social media – Facebook and Instagram in particular – at a bewildering rate.

It’s more than just an opportunity to laugh at a potential Presidential candidate taking a self-inflicted cold shower it’s also raising a ton of money. The ALS Association says it raised $4 million in donations between the end of July and August 12th. That’s more than three and a half times more than it raised during the same period last year. They have also added more than 70,000 new donors to their cause.

That money goes to research into finding new treatments for ALS because right now there is no effective therapy at all. It also goes to help people living with this nasty, debilitating and ultimately deadly disease.

In a blog on the ALS website Barbara Newhouse, the President and CEO of the ALS Association said:

“We have never seen anything like this in the history of the disease. We couldn’t be more thrilled with the level of compassion, generosity and sense of humor that people are exhibiting as they take part in this impactful viral initiative.”

What I love about this is not just that it is raising awareness and funds for a truly worthwhile cause but that it also shows how a little bit of creativity can create so much more interest in a disease, and the people suffering from it, than any amount of well-meaning, more traditional attempts at education.

At the Stem Cell Agency we have worked closely with our friends in the ALS Association for many years and they do terrific work (you can read about our funding on our ALS Fact Sheet). But it’s a relatively rare condition – only affecting some 30,000 people in the U.S. at any one time – so it always struggles to get people’s attention compared to bigger diseases such as Alzheimer’s or stroke. But with this campaign they have changed that. They have taken a simple idea, a simple challenge, and used it to open people’s eyes to what they can do to help fight back against a deadly disease.

I find that really refreshing. As refreshing as a bucket of water over my own head.

Kevin McCormack