Stem cell stories that caught our eye; cystic fibrosis, brain repair and Type 2 diabetes

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

“Organoids” screen for cystic fibrosis drugs
. Starting with iPS-type stem cells made by reprogramming skin cells from cystic fibrosis (CF) patients a team at the University of Cambridge in the U.K. created mini lungs in a dish. These organoids should provide a great tool for screening drugs to treat the disease.

The researchers pushed the stem cells to go through the early stages of embryo development and then on to become 3-D distal airway tissue, the part of the lung that processes gas exchange. They were able to use a florescent marker to show an aspect of the cells’ function that was different in cells from CF patients and those from normal individuals. When they treated the CF cells with a drug that is being tested in CF patients, they saw the function correct to the normal state.

Bioscience Technology
picked up the university’s press release about the work published in the journal Stem Cells and Development. It quotes the scientist who led the study, Nick Hannon, on the application of the new tool:

“We’re confident this process could be scaled up to enable us to screen tens of thousands of compounds and develop mini-lungs with other diseases such as lung cancer and idiopathic pulmonary fibrosis.”

To repair a brain knock its “pinky” down. A team at the University of California, San Francisco, has discovered a molecule that when it is shut down nerve stem cells can produce a whole lot more nerves. They call the molecule Pnky, named after the cartoon Pinky and the Brain.

Pinky_and_the_Brain_vol1Pkny belongs to a set of molecules known as long noncoding RNAs (lncRNAs), which researchers are finding are more abundant and more important than originally thought. The most familiar RNAs are the intermediary molecules between the DNA in our genes and the proteins that let our cells function. Initially, all the noncoding RNAs were thought to have no function, but in recent years many have been found to have critical roles in determining which genes are active. And Pnky seems to tamp down the activity of nerve stem cells. In a university press release picked up by HealthCanal Daniel Lim, the head researcher explained what happens when they shut down the gene:

“It is remarkable that when you take Pnky away, the stem cells produce many more neurons. These findings suggest that Pnky, and perhaps lncRNAs in general, could eventually have important applications in regenerative medicine and cancer treatment.”

Lim went onto explain the cancer connection. Since Pnky binds to a protein found in brain tumors, it might be involved in regulating the growth of brain tumors. A lot more work needs to happen before that hunch—or the use of Pnky blockers in brain injury—can lead to therapies, but this study certainly paints an intriguing path forward.

Stem cells and Type 2 diabetes. A few teams have succeeded in using stem cells to produce insulin-secreting tissue to correct Type 1 diabetes in animals, but it has been uncertain if the procedure would work for Type 2 diabetes. Type 1 is marked by a lack of insulin production, while resistance to the body’s own insulin, not lack of insulin, is the hallmark of type 2. A team at the University of British Columbia has new data showing stem cell therapy may indeed have a place in treating Type 2.

In mice fed a high fat diet until they developed the symptoms of Type 2 diabetes the stem cell-derived cells did help, but they did not fully correct the metabolism of the mice until they added one of the drugs commonly used to treat diabetes today. The drugs alone, also did not restore normal metabolism, which is often the case with human Type 2 diabetics.

The combination of drugs and cells improved the mice’s sugar metabolism, body weight and insulin sensitivity. The research appeared in the journal Stem Cell Reports and the University’s press release was picked up by several outlets including Fox News.

They transplanted cells from humans and even though the mice were immune suppressed, they took the added measure of protecting the cells in an encapsulation device. They noted that this would be required for use in humans and showing that it worked in mice would speed up any human trials. They also gave a shout out to the clinical trial CIRM funds at Viacyte, noting that since the Food and Drug Administration has already approved use of a similar device by Viacyte, the work might gain more rapid approval.

Stem cell stories that caught our eye: Cancer genetics, cell fate, super donors and tale of road to diabetes cure

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

For cancer growth timing is everything. A study originating at the University of Southern California suggests tumors are born to be bad. Mutations constantly occur during the life of a tumor but those that occur early on determine if a tumor will grow as a benign mass of a cancerous one that spreads.

Describing the genetic markers the team found, the senior author, Christina Curtis, who recently moved to Stanford, was quoted in a story in ScienceBlog:

“What you see in the final cancer was there from the beginning.”

The CIRM funded team completed detailed genetic analysis of tumor cells surgically removed from colon cancer patients. Doctors treating these patients have long been hampered by an inability to tell which tumors will remain small and benign and which will develop into full-blown cancer. The researchers suggest the genetic fingerprints they have uncovered could lead to improved diagnosis for patients.

Physical forces also key to cell fate.
Putting the squeeze on stem cells may be what’s needed to get them to become bone. In this case, a team at the University of California, San Diego, used teeny tiny tweezers called “optical tweezers,” to trigger key internal signals that directed stem cells to go down the path to bone.

Pressure results in release of a cell signal shown in red

Pressure results in release of a cell signal shown in red

We have frequently written about the tremendous importance of a stem cell’s environment—its neighborhood if you will—in determining its fate. Yingxiao Wang, who led the study, described this role in a press release from the university picked up by ScienceNewsline:

“The mechanical environment around a stem cell helps govern a stem cell’s fate. Cells surrounded in stiff tissue such as the jaw, for example, have higher amounts of tension applied to them, and they can promote the production of harder tissues such as bone.”

He said the findings should help researchers trying to replicate the natural stem cell environment in the lab when they try to grow replacement tissues for patients.

Super donors could provide matching tissue.
One of the biggest challenges of using stem cells to replace damaged tissue is avoiding immune system rejection of the new cells. CIRM-grantee Cellular Dynamics International (CDI) announced this week that they have made key initial steps to creating a cell bank that could make this much easier.

Our bodies use molecules on the surface of our cells to identify tissue that is ours versus foreign such as bacteria. The huge variation in those molecules, called HLA, makes the matching needed for donor organ, or donor cells, more difficult than the New York Times Sunday crossword. But a few individuals posses an HLA combination that allows them to match to a large percent of the population.

CDI has now created clinical grade stem cell lines using iPS reprogramming of adult tissue from two such “super donors.” Just those two cell lines provide genetic matches for 19 percent of the population. The company plans to develop additional lines from other super donors with the goal of creating a bank that would cover 95 percent of the population.

Reuters picked up the company’s press release. CIRM does not fund this project, but we do fund another cell bank for which CDI is creating cells to better understand the causes of 11 diseases that have complex genetic origins

Narrative tells the tale of developing diabetes therapy. MIT Technology Review has published a well-told feature about the long road to creating a stem cell-based therapy for diabetes. Author Bran Alexander starts with the early days of the “stem cell wars” and carries the tale through treatment of the first patients in the CIRM-funded clinical trial being carried out by ViaCyte and the University of California, San Diego.

The piece quotes Viacyte’s chief scientific officer Kevin D’Amour about the long road:

“When I first came to ViaCyte 12 years ago, cell replacement through stem cells was so obvious. We all said, ‘Oh, that’s the low-hanging fruit.’ But it turned out to be a coconut, not an apple.”

But the article shows that with Viacyte’s product as well as others coming down the pike, that coconut has been cracked and real hope for diabetics lies inside.

Stem cell stories that caught our eye: new ways to reprogram, shifting attitudes on tissue donation, and hockey legend’s miracle questioned

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Insulin-producing cells produced from skin. Starting with human skin cells a team at the University of Iowa has created iPS-type stem cells through genetic reprogramming and matured those stem cells into insulin-producing cells that successfully brought blood-sugar levels closer to normal when transplanted in mice.

University of Iowa researchers reprogrammed human skin cells to create iPS cells, which were then differentiated in a stepwise fashion to create insulin-producing cells. When these cells were transplanted into diabetic mice, the cells secreted insulin and reduced the blood sugar levels of the mice to normal or near-normal levels. The image shows the insulin-producing cells (right) and precursor cells (left). [Credit: University of Iowa]

University of Iowa researchers reprogrammed human skin cells to create iPS cells, which were then differentiated in a stepwise fashion to create insulin-producing cells. When these cells were transplanted into diabetic mice, the cells secreted insulin and reduced the blood sugar levels of the mice to normal or near-normal levels. The image shows the insulin-producing cells (right) and precursor cells (left).
[Credit: University of Iowa]

The cells did not completely restore blood-sugar levels to normal, but did point to the possibility of achieving that goal in the future, something the team leader Nicholas Zavazava noted in an article in the Des Moines Register, calling the work an “encouraging first step” toward a potential cure for diabetes.

The Register discussed the possibility of making personalized cells that match the genetics of the patient and avoiding the need for immune suppression. This has long been a goal with iPS cells, but increasingly the research community has turned to looking for options that would avoid immune rejection with donor cells that could be off-the-shelf and less expensive than making new cells for each patient.

Heart cells from reprogramming work in mice. Like several other teams, a group in Japan created beating heart cells from iPS-type stem cells. But they went the additional step of growing them into sheets of heart muscle that when transplanted into mice integrated into the animals own heart and beat to the same rhythm.

The team published the work in Cell Transplantation and the news agency AlianzaNews ran a story noting that it has previously been unclear if these cells would get in sync with the host heart muscle. The result provides hope this could be a route to repair hearts damaged by heart attack.

Patient attitudes on donating tissue. A University of Michigan study suggests most folks don’t care how you use body tissue they donate for research if you ask them about research generically. But their attitudes change when you ask about specific research, with positive responses increasing for only one type of research: stem cell research.

On the generic question, 69 percent said go for it, but when you mentioned the possibility of abortion research more than half said no and if told the cells might lead to commercial products 45 percent said nix. The team published their work in the Journal of the American Medical Association and HealthCanal picked up the university’s press release that quoted the lead researcher, Tom Tomlinson, on why paying attention to donor preference is so critical:

“Biobanks are becoming more and more important to health research, so it’s important to understand these concerns and how transparent these facilities need to be in the research they support.”

CIRM has begun building a bank of iPS-type stem cells made from tissue donated by people with one of 11 diseases. We went through a very detailed process to develop uniform informed consent forms to make sure the donors for our cell bank knew exactly how their cells could be used. Read more about the consent process here.

Mainstream media start to question hockey legend’s miracle. Finally some healthy skepticism has arrived. Hockey legend Gordie Howe’s recovery from a pair of strokes just before the holidays was treated by the general media as a true Christmas miracle. The scientific press tried to layer the coverage with some questions of what we don’t know about his case but not the mainstream media. The one exception I saw was Brad Fikes in the San Diego Union Tribune who had to rely on a couple of scientists who were openly speaking out at the time. We wrote about their concerns then as well.

Now two major outlets have raised questions in long pieces back-to-back yesterday and this morning. The Star in hockey-crazed Canada wrote the first piece and New York Magazine wrote today’s. Both raise serious questions about whether stem cells could have been the cause of Howe’s recovery and are valuable additions to the coverage.

How stem cells made the list of scientific breakthroughs of 2014 (twice actually)

This is the time of year when everyone puts out their lists of the best and worst of the last 12 months. The best movies (”Guardians of the Galaxy”, “The Grand Budapest Hotel”) the worst movies (“Guardians of the Galaxy”, “The Grand Budapest Hotel” – it’s all a matter of taste really) the best music etc. You get the picture.

Science imagesSo it’s always fun to see what makes the list of the “biggest scientific breakthroughs” of 2014. I put those in quotations because I always get a little nervous using the word “breakthrough” when talking about stem cells; what seems like a breakthrough one year, could prove out to be a dud the next. Or, worse still, a fake – see yesterday’s blog. But when Science magazine uses the word as part of its article: ‘Breakthrough of the Year: The top 10 scientific achievements of 2014’, I think it has a shot at being accurate.

The list is compiled by the editors of Science, to highlight what they call “a singular scientific achievement”. I’ll tell you what they chose as the winner in a moment, but there are two stem cell stories that were listed as runners-up.

Giving new life to old mice; cartoon courtesy of

Giving new life to old mice; cartoon courtesy of

The first story was about a trio of studies that showed how giving older mice the blood of younger mice can help rejuvenate them in surprising ways, including improving muscle and brain function. We blogged about this work when it came out in May. It’s already being tested to see if it might work in people, with 18 Alzheimer’s patients getting injections of plasma donated by young adults, to see if that can help slow down or halt the progression of the disease.

The second story was about work turning embryonic stem (ES) cells into mature beta cells, the kind of cells found in our pancreas that help produce insulin. These are also the cells that are destroyed in type 1 diabetes. This year researchers found a way to turn ES cells into mass quantities of beta cells, a critical first step in developing a therapy for type 1 diabetes. The next step is to find a way to protect those cells from the same autoimmune reaction that killed the beta cells in the first place.

What’s particular interesting about this work – at least from our perspective – is that we are funding a clinical trial run by ViaCyte that uses this same approach, and has the cells encapsulated in a special device to protect them from the immune system.

Getting two stem cell stories on the list of the biggest scientific stories of the year is no mean achievement, and a sign of the progress the field is making. We’re hoping that 2015 sees even more stem cell stories making positive news headlines.

As for the story named the “Breakthrough of the Year”, it was the ten-year mission that ended with the landing of a spacecraft on a comet 326 million miles away from earth. Coming second to that kind of astonishing achievement is no disgrace.

Stem Cell Stories that Caught Your Eye: The Most Popular Stem Cellar Stories of 2014

2014 marked an extraordinary year for regenerative medicine and for CIRM. We welcomed a new president, several of our research programs have moved into clinical trials—and our goal of accelerating treatments for patients in need is within our grasp.

As we look back we’d like to revisit The Stem Cellar’s ten most popular stories of 2014. We hope you enjoyed reading them as much as we did reporting them. And from all of us here at the Stem Cell Agency we wish you a Happy Holidays and New Year.

10. UCSD Team Launches CIRM-Funded Trial to Test Safety of New Leukemia Drug

9. Creating a Genetic Model for Autism, with a Little Help from the Tooth Fairy

8. A Tumor’s Trojan Horse: CIRM Researchers Build Nanoparticles to Infiltrate Hard-to-Reach Tumors

7. CIRM funded therapy for type 1 diabetes gets FDA approval for clinical trial

6. New Videos: Living with Crohn’s Disease and Working Towards a Stem Cell Therapy

5. Creativity Program Students Reach New Heights with Stem Cell-Themed Rendition of “Let it Go”

4. Scientists Reach Yet Another Milestone towards Treating Type 1 Diabetes

3. Meet the Stem Cell Agency President C. Randal Mills

2. Truth or Consequences: how to spot a liar and what to do once you catch them

1. UCLA team cures infants of often-fatal “bubble baby” disease by inserting gene in their stem cells; sickle cell disease is next target

Stem cell stories that caught our eye: two new approaches to treating diabetes and a video on why this work excites

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Insulin producing cells avoid immune rejection. The phrase, there is more than one way to skin a cat often applies to the science of trying to develop therapies. A CIRM-funded team at the company Viacyte is working to cure diabetes and has developed a cell line that is a middleman, or precursor cell, part way between a stem cell and a fully mature insulin-producing cell. When transplanted into animal patients it has been shown to mature into the needed cells and correct the faulty sugar levels caused by the disease.

But, the company could not just transplant those cells into patients whose own insulin-producing cells had been destroyed by their immune system without protecting them from that immune attack. In a human trial we are funding that began in September the Viacyte team protects the cells inside a small porous pouch placed under the skin.

Insulin-producing cells shown in green surviving after transplant because of the new procedure.

Insulin-producing cells shown in green surviving after transplant because of the new procedure.

Now they have reported in Cell Stem Cell work done with researchers at the University of California, San Francisco that shows that a drug-like pretreatment can alter the animal’s immune response and let the new cells survive without the protective pouch. Those cells, called PEC-01, were protected by agents that blocked a very specific part of the immune system that causes immune rejection—a much gentler treatment than the immune suppression used for organ transplants.

The San Diego Union Tribune did a nice job of putting the two approaches into perspective, and Reuters picked up the company’s press release that quotes the senior UCSF researcher Jeffrey Bluestone:

“The demonstration that these new immunotherapies block specific pathways and immune cells that are responsible for attacking pancreatic islet cells and prevent the rejection of implanted PEC-01 cells is an exciting finding that could lead to advances in the way we treat diabetes and other diseases.”

Stem cell work a runner up for discovery of the year. Each year the journal Science names a discovery of the year and nine runners up. This year the Mars rover took top honors but a Harvard team scored a runner up slot for its work creating mature insulin producing cells from stem cells in the lab. Many labs had failed to accomplish this feat over the past several years.

I agree this is a big deal, but many researchers in the field believe that the best place to mature stem cells into the desired tissue is in the patient where they can take cues from the body that are much more complex than what we can recreate in the lab. The Viacyte team cited above uses the in-the-body approach and is already testing the therapy in patients.

Toward the end of the original Harvard press release and at the end of the notice in Science, the authors note that before the work can be used in patients they need to overcome the patient’s immune reaction—something the most recent Viacyte discovery might be able to help achieve.

Clue found for how stem cells make decisions.
Many a researcher has used the Bizarro cartoon labeled “Stem Cell Parental Advice” with the thought balloon “You are a stem cell you can become anything you want when you grow up.” Researchers have found that ability to be a double-edged sword. Since stem cells can become anything it is often hard to direct them efficiently down a particular desired path.

Now a Danish team from the University of Copenhagen has documented in Cell Reports a way to block all the various maturation paths and keep the stem cells in a stem cell state. This could be a first step to being able to consistently direct them down one preferred path. Science Codex picked up the university’s press release, which quoted a member of the research team, Joshua Brickman on why this could be valuable:

“If you block all the choices they can make, they stay in the stem cell state. If you only allow them one door to exit from the stem cell state, you should be able to make particular cell types more efficiently. So if you only leave one door open then it’s the path of least resistance and when you give them a push they really go.”

Video captures the excitement of stem cell researchers. Stanford’s research blog Scope produced a fun end-of-the-year piece that includes a video of researcher Margaret Fuller describing why she is so excited to work in this field. One example she cites came from a recent report about using stem cells to help repair lost muscle in wounded soldiers returning from Afghanistan. I’ll let you watch the video to see why she said “It gives me chills just thinking about it.”

10 Years/10 Therapies: 10 Years after its Founding CIRM will have 10 Therapies Approved for Clinical Trials

In 2004, when 59 percent of California voters approved the creation of CIRM, our state embarked on an unprecedented experiment: providing concentrated funding to a new, promising area of research. The goal: accelerate the process of getting therapies to patients, especially those with unmet medical needs.

Having 10 potential treatments expected to be approved for clinical trials by the end of this year is no small feat. Indeed, it is viewed by many in the industry as a clear acceleration of the normal pace of discovery. Here are our first 10 treatments to be approved for testing in patients.

HIV/AIDS. The company Calimmune is genetically modifying patients’ own blood-forming stem cells so that they can produce immune cells—the ones normally destroyed by the virus—that cannot be infected by the virus. It is hoped this will allow the patients to clear their systems of the virus, effectively curing the disease.

Spinal cord injury patient advocate Katie Sharify is optimistic about the latest clinical trial led by Asterias Biotherapeutics.

Spinal cord injury patient advocate Katie Sharify is optimistic about the clinical trial led by Asterias Biotherapeutics.

Spinal Cord Injury. The company Asterias Biotherapeutics uses cells derived from embryonic stem cells to heal the spinal cord at the site of injury. They mature the stem cells into cells called oligodendrocyte precursor cells that are injected at the site of injury where it is hoped they can repair the insulating layer, called myelin, that normally protects the nerves in the spinal cord.

Heart Disease. The company Capricor is using donor cells derived from heart stem cells to treat patients developing heart failure after a heart attack. In early studies the cells appear to reduce scar tissue, promote blood vessel growth and improve heart function.

Solid Tumors. A team at the University of California, Los Angeles, has developed a drug that seeks out and destroys cancer stem cells, which are considered by many to be the reason cancers resist treatment and recur. It is believed that eliminating the cancer stem cells may lead to long-term cures.

Leukemia. A team at the University of California, San Diego, is using a protein called an antibody to target cancer stem cells. The antibody senses and attaches to a protein on the surface of cancer stem cells. That disables the protein, which slows the growth of the leukemia and makes it more vulnerable to other anti-cancer drugs.

Sickle Cell Anemia. A team at the University of California, Los Angeles, is genetically modifying a patient’s own blood stem cells so they will produce a correct version of hemoglobin, the oxygen carrying protein that is mutated in these patients, which causes an abnormal sickle-like shape to the red blood cells. These misshapen cells lead to dangerous blood clots and debilitating pain The genetically modified stem cells will be given back to the patient to create a new sickle cell-free blood supply.

Solid Tumors. A team at Stanford University is using a molecule known as an antibody to target cancer stem cells. This antibody can recognize a protein the cancer stem cells carry on their cell surface. The cancer cells use that protein to evade the component of our immune system that routinely destroys tumors. By disabling this protein the team hopes to empower the body’s own immune system to attack and destroy the cancer stem cells.

Diabetes. The company Viacyte is growing cells in a permeable pouch that when implanted under the skin can sense blood sugar and produce the levels of insulin needed to eliminate the symptoms of diabetes. They start with embryonic stem cells, mature them part way to becoming pancreas tissues and insert them into the permeable pouch. When transplanted in the patient, the cells fully develop into the cells needed for proper metabolism of sugar and restore it to a healthy level.

HIV/AIDS. A team at The City of Hope is genetically modifying patients’ own blood-forming stem cells so that they can produce immune cells—the ones normally destroyed by the virus—that cannot be infected by the virus. It is hoped this will allow the patients to clear their systems of the virus, effectively curing the disease

Blindness. A team at the University of Southern California is using cells derived from embryonic stem cell and a scaffold to replace cells damaged in Age-related Macular Degeneration (AMD), the leading cause of blindness in the elderly. The therapy starts with embryonic stem cells that have been matured into a type of cell lost in AMD and places them on a single layer synthetic scaffold. This sheet of cells is inserted surgically into the back of the eye to replace the damaged cells that are needed to maintain healthy photoreceptors in the retina.

What everybody needs to know about CIRM: where has the money gone

It’s been almost ten years since the voters of California created the Stem Cell Agency when they overwhelmingly approved Proposition 71, providing us $3 billion to help fund stem cell research.

In the last ten years we have made great progress – we will have ten projects that we are funding in or approved to begin clinical trials by the end of this year, a really quite remarkable achievement – but clearly we still have a long way to go. However, it’s appropriate as we approach our tenth anniversary to take a look at how we have spent the money, and how much we have left.

Of the $3 billion Prop 71 generates around $2.75 billion was set aside to be awarded to research, build laboratories etc. The rest was earmarked for things such as staff and administration to help oversee the funding and awards.

Of the research pool here’s how the numbers break down so far:

  • $1.9B awarded
  • $1.4B spent
  • $873M not awarded

So what’s the difference between awarded and spent? Well, unlike some funding agencies when we make an award we don’t hand the researcher all the cash at once and say “let us know what you find.” Instead we set a series of targets or milestones that they have to reach and they only get the next installment of the award as they meet each milestone. The idea is to fund research that is on track to meet its goals. If it stops meetings its goals, we stop funding it.

Right now our Board has awarded $1.9B to different institutions, companies and researchers but only $1.4B of that has gone out. And of the remainder we estimate that we will get around $100M back either from cost savings as the projects progress or from programs that are cancelled because they failed to meet their goals.

So we have approximately $1B for our Board to award to new research, which means at our current rate of spending we’ll have enough money to be able to continue funding new projects until around 2020. Because these are multi-year projects we will continue funding them till around 2023 when those projects end and, theoretically at least, we run out of money.

But we are already working hard to try and ensure that the well doesn’t run dry, and that we are able to develop other sources of funding so we can continue to support this work. Without us many of these projects are at risk of dying. Having worked so hard to get these projects to the point where they are ready to move out of the laboratory and into clinical trials in people we don’t want to see them fall by the wayside for lack of support.

Of the $1.9B we have awarded, that has gone to 668 awards spread out over five different categories:

CIRM spending Oct 2014

Increasingly our focus is on moving projects out of the lab and into people, and in those categories – called ‘translational’ and ‘clinical’ – we have awarded almost $630M in funding for more than 80 active programs.

Untitled

Under our new CIRM 2.0 plan we hope to speed up the number of projects moving into clinical trials. You can read more about how we plan on doing there in this blog.

It took Jonas Salk almost 15 years to develop a vaccine for polio but those years of hard work ended up saving millions of lives. We are working hard to try and achieve similar results on dozens of different fronts, with dozens of different diseases. That’s why, in the words of our President & CEO Randy Mills, we come to work every day as if lives depend on us, because lives depend on us.

Moving one step closer to a therapy for type 1 diabetes

When I was a medical journalist one word I always shied away from was “breakthrough”. There are few true breakthroughs in medicine. Usually any advance is the result of years and years of work. That’s why good science takes time; it takes hundreds of small steps to make a giant leap forward.

Today we took one of those steps. ViaCyte, a company we have supported for many years, just announced that the first patient has been successfully implanted with a device designed to help treat type 1 diabetes.

It’s an important milestone for the company, for us, and of course for people with type 1 diabetes. As Dr. Paul Laikind, the President and CEO of ViaCyte, said in a news release, this is an exciting moment:

“To our knowledge, this is the first time that an embryonic stem cell-derived cell replacement therapy for diabetes has been studied in human subjects, and it represents the culmination of a decade of effort by the ViaCyte team, our collaborators, and our supporters at the California Institute for Regenerative Medicine and at JDRF.”

The VC-01 device is being tested in a clinical trial at the University of California, San Diego Health System. There are two goals; first to see if it is safe; and secondly to see if it helps patients who have type 1 diabetes. When the device is implanted under the skin the cells inside are able to sense when blood sugar is high and, in response, secrete insulin to restore it to a healthy level.

The beauty of the VC-01 is that while it lets cells secrete insulin out, it prevents the body’s own immune system from getting in and attacking the cells.

The device is about the length and thickness of a credit card but only half as wide which makes it easy to implant under the skin.

Today’s news, that this is now truly out of the lab and being tested in patients is an important step in a long road to showing that it works in patients. The people at ViaCyte, who have been working hard on this project for many years, know that they still have a long way to go but for today at least, this step probably feels a little bit more like a skip for joy.

Scientists Reach Yet Another Milestone towards Treating Type 1 Diabetes

There was a time when having type 1 diabetes was equivalent to a death sentence. Now, thanks to advances in science and medicine, the disease has shifted from deadly to chronic.

But this shift, doctors argue, is not good enough. The disease still poses significant health risks, such as blindness and loss of limbs, as the patients get older. There has been a renewed effort, therefore, to develop superior therapies—and those based on stem cell technology have shown significant promise.

Human stem cell-derived beta cells that have formed islet like clusters in a mouse. Cells were transplanted to the kidney capsule and photo was taken two weeks later by which time the beta cells are making insulin and have cured the mouse's diabetes. [Credit: Douglas Melton]

Human stem cell-derived beta cells that have formed islet like clusters in a mouse. Cells were transplanted to the kidney capsule and photo was taken two weeks later by which time the beta cells are making insulin and have cured the mouse’s diabetes. [Credit: Douglas Melton]

Indeed, CIRM-funded scientists at San Diego-based Viacyte, Inc. recently received FDA clearance to begin clinical trials of their VC-01 product candidate that delivers insulin via healthy beta cells contained in a permeable, credit card-sized pouch.

And now, scientists at Harvard University have announced a technique for producing mass quantities of mature beta cells from embryonic stem cells in the lab. The findings, published today in the journal Cell, offer additional hope for the millions of patients and their families looking for a better way to treat their condition.

The team’s ability to generate billions of healthy beta cells—cells within the pancreas that produce insulin in order to maintain normal glucose levels—has a particular significance to the study’s senior author and co-scientific director of the Harvard Stem Cell Institute, Dr. Doug Melton. 23 years ago, his infant son Sam was diagnosed with type 1 diabetes and since that time Melton has dedicated his career to finding better therapies for his son and the millions like him. Melton’s daughter, Emma, has also been diagnosed with the disease.

Type 1 diabetes is an autoimmune disorder in which the body’s immune system systematically targets and destroys the pancreas’ insulin-producing beta cells.

In this study, the team took human embryonic stem cells and transformed them into healthy beta cells. They then transplanted them into mice that had been modified to mimic the signs of diabetes. After closely monitoring the mice for several weeks, they found that their diabetes was essentially ‘cured.’ Said Melton:

“You never know for sure that something like this is going to work until you’ve tested it numerous ways. We’ve given these cells three separate challenges with glucose in mice and they’ve responded appropriately; that was really exciting.”

The researchers are undergoing additional pre-clinical studies in animal models, including non-human primates, with the hopes that the 150 million cells required for transplantation are also protected from the body’s immune system, and not destroyed.

Melton’s team is collaborating with Medical Engineer Dr. Daniel G. Anderson at MIT to develop a protective implantation device for transplantation. Said Anderson of Melton’s work:

“There is no question that the ability to generate glucose-responsive, human beta cells through controlled differentiation of stem cells will accelerate the development of new therapeutics. In particular, this advance opens the doors to an essentially limitless supply of tissue for diabetic patients awaiting cell therapy.”