Stem cell stories that caught our eye: two new approaches to treating diabetes and a video on why this work excites

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Insulin producing cells avoid immune rejection. The phrase, there is more than one way to skin a cat often applies to the science of trying to develop therapies. A CIRM-funded team at the company Viacyte is working to cure diabetes and has developed a cell line that is a middleman, or precursor cell, part way between a stem cell and a fully mature insulin-producing cell. When transplanted into animal patients it has been shown to mature into the needed cells and correct the faulty sugar levels caused by the disease.

But, the company could not just transplant those cells into patients whose own insulin-producing cells had been destroyed by their immune system without protecting them from that immune attack. In a human trial we are funding that began in September the Viacyte team protects the cells inside a small porous pouch placed under the skin.

Insulin-producing cells shown in green surviving after transplant because of the new procedure.

Insulin-producing cells shown in green surviving after transplant because of the new procedure.

Now they have reported in Cell Stem Cell work done with researchers at the University of California, San Francisco that shows that a drug-like pretreatment can alter the animal’s immune response and let the new cells survive without the protective pouch. Those cells, called PEC-01, were protected by agents that blocked a very specific part of the immune system that causes immune rejection—a much gentler treatment than the immune suppression used for organ transplants.

The San Diego Union Tribune did a nice job of putting the two approaches into perspective, and Reuters picked up the company’s press release that quotes the senior UCSF researcher Jeffrey Bluestone:

“The demonstration that these new immunotherapies block specific pathways and immune cells that are responsible for attacking pancreatic islet cells and prevent the rejection of implanted PEC-01 cells is an exciting finding that could lead to advances in the way we treat diabetes and other diseases.”

Stem cell work a runner up for discovery of the year. Each year the journal Science names a discovery of the year and nine runners up. This year the Mars rover took top honors but a Harvard team scored a runner up slot for its work creating mature insulin producing cells from stem cells in the lab. Many labs had failed to accomplish this feat over the past several years.

I agree this is a big deal, but many researchers in the field believe that the best place to mature stem cells into the desired tissue is in the patient where they can take cues from the body that are much more complex than what we can recreate in the lab. The Viacyte team cited above uses the in-the-body approach and is already testing the therapy in patients.

Toward the end of the original Harvard press release and at the end of the notice in Science, the authors note that before the work can be used in patients they need to overcome the patient’s immune reaction—something the most recent Viacyte discovery might be able to help achieve.

Clue found for how stem cells make decisions.
Many a researcher has used the Bizarro cartoon labeled “Stem Cell Parental Advice” with the thought balloon “You are a stem cell you can become anything you want when you grow up.” Researchers have found that ability to be a double-edged sword. Since stem cells can become anything it is often hard to direct them efficiently down a particular desired path.

Now a Danish team from the University of Copenhagen has documented in Cell Reports a way to block all the various maturation paths and keep the stem cells in a stem cell state. This could be a first step to being able to consistently direct them down one preferred path. Science Codex picked up the university’s press release, which quoted a member of the research team, Joshua Brickman on why this could be valuable:

“If you block all the choices they can make, they stay in the stem cell state. If you only allow them one door to exit from the stem cell state, you should be able to make particular cell types more efficiently. So if you only leave one door open then it’s the path of least resistance and when you give them a push they really go.”

Video captures the excitement of stem cell researchers. Stanford’s research blog Scope produced a fun end-of-the-year piece that includes a video of researcher Margaret Fuller describing why she is so excited to work in this field. One example she cites came from a recent report about using stem cells to help repair lost muscle in wounded soldiers returning from Afghanistan. I’ll let you watch the video to see why she said “It gives me chills just thinking about it.”

CIRM-Funded UC-Irvine Team Set to Launch Stem Cell Trial for Retinitis Pigmentosa in 2015

Rosalinda Barrero has often been mistaken for a rude snob. She has the habit of not saying hello or even acknowledging the presence of acquaintances that she passes around town. But in fact this kind, loving mom of three has been steadily losing her vision over a lifetime. And she doesn’t seem blind because people are still vaguely visible as shadowy ghosts but their faces are unrecognizable.

RosalindaBarrero_blog

Rosalinda Barrero is legally blind due to retinitis pigmentosa. She eagerly awaits the launch of a CIRM-funded trial that will test a candidate stem cell-based treatment.

Barrero is stricken with retinitis pigmentosa (RP) an incurable genetic disease that gradually destroys the light sensing nerve cells, called photoreceptors, located in the retina at the back of the eye. In October, Rosalinda and her husband German spoke to the CIRM governing Board about the devastating impact of RP on their lives and their excitement about a soon to begin CIRM-funded stem cell-based clinical trial for the treatment of RP. The project is headed by UC-Irvine associate professor Henry Klassen, MD, PhD, who also spoke to the Board. Videos of their presentations are now available on our website and below:

Over 3000 known genetic mutations can give rise to RP. These mutations lead to the gradual deterioration of the so-called rod photoreceptors. These rod cells specifically provide our night vision — like on a moonless night. Rosalinda clearly remembers her childhood struggles with night blindness on Halloween:

“I didn’t like trick-or-treating because I couldn’t see in the dark. I ‘d say ‘this is not fun! I’m tripping! I’m losing all my candy!’ I wanted to stay home and hand out candy”

Unfortunately the disease doesn’t stop there. As the rods continue to die off another type of photoreceptor, the cone cells, become innocent bystanders and also gradually deteriorate later in life. As Dr. Klassen explained, it’s the cone cells that are critical for our sight:

“The cones are what humans use for almost all of their vision. Even at night when you’re driving a car with headlights you’re using mainly your cones. So if we could preserve the cones we can really help the patient.”

With the support of a $17 million CIRM Disease Team grant, Klassen and his team anticipates starting a stem-call based clinical trial in early 2015 with the ultimate aim of healing those cone cells in RP patients. The therapy uses a type of immature stem cell of the retina called retinal progenitor cells. The proposed approach relies on the injection of the cells into the jelly of the eye near the retina to promote indirect healing. Klassen explained the project rationale to the Board:

“So we’re talking about little clusters of cells that could fit on the head of a pin in the jelly of the eye and they’re just floating there. And what are they going to do? Well they just sit there and secrete all the factors they normally secrete during retinal development and diffuse into the retina. Once in the retina we believe [based on animal studies] those factors are going to reprogram the photoreceptors into becoming functional again instead of going down that road where they’re going to commit suicide.”

Rosalinda is beyond thrilled with the prospect of being a recipient of this candidate therapy. Her husband German echoed her hopefulness to the Board:

“Even though it’s not a deadly disease, [the therapy] would be life-changing not only for Rosie it would be for everyone around her. “

To learn more about CIRM-funded research related to blindness, visit our fact sheet.

Stem cell stories that caught our eye: good fat vs. bad fat, the black box of cell reprogramming and Parkinson’s

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

One day a pill might turn bad fat into good fat. For a few years now several research teams have linked white fat to the bad health effects of fat and brown fat to more positive metabolism and to being leaner. Now, a team at the Harvard Stem Cell Institute has used stem cells in the laboratory as a screening tool to look for drugs that could cause the bad fat to turn into the good fat.

Brown fat derived from stem cells. Image courtesy of Harvard

Brown fat derived from stem cells. Image courtesy of Harvard

They have found two molecules that can prevent fat stem cells from becoming mature white fat and instead direct them to become brown fat. But those two molecules used as pills would likely have too many unintended side effects to become a treatment that would likely need to be taken long-term. So, despite some overblown headlines about a “pill to replace a treadmill,” don’t count on it anytime soon.

That treadmill line came from a story in the Harvard Gazette, but to the school’s credit they did follow-up with the needed caveats:

“The path from these findings to a safe and effective medication may not be easy, and the findings will have to be replicated by other research groups, as well as refined, before they could lead to a clinical treatment.”

Opening up the black box of reprogramming cells. Researchers around the world have been turning adult cells into embryonic-like stem cells ever since Shinya Yamanaka’s Nobel-prize winning work showing it was possible more than six years ago. But no one really knew how it works. And that lack of understanding has made it quite difficult to improve on the poor efficiency and mixed-results of the process.

This led 30 senior scientists at eight institutions around the world to launch a project in 2010 to create an extremely detailed map of all the switching on and off of genes over time during the weeks it takes to reprogram adult cells to become “pluripotent” stem cells. The effort, called Project Grandiose, reported its results this week in a series of three papers in the journal Nature Communications. The name comes in part from the massive size of the data sets involved. Files could not be sent electronically. The teams were shipping memory storage devices around the world by courier. The leader of the project, Andras Nagy of Mount Sinai Hospital in Toronto described the project in a review of the field in Nature:

“It was the first high-resolution analysis of change in cell state over time. I’m not shy about saying grandiose.”

That journal review provides the best history of reprogramming that I have read and it is written on a level that a lay science hobbyist could understand. It gives a good explanation for one of the surprise findings from Project Grandiose that got a little over-played in some coverage. That was discovery of a new type of pluripotent stem cell called F Class, not referring to Mercedes car lines, but rather the fact that the cell clusters in a lab dish look fuzzy. The process that creates them in the lab seems to be more efficient than traditional reprogramming.

The critical output of the international project is more practical. Researchers around the world now have myriad new ways to think about improving the production of reprogrammed stem cells. Ken Zaret of the University of Pennsylvania, and a long time toiler in the field told the author of the Nature review this work opens up options for more reliable sources of cells to be used in human medicine:

“The motivation of my research is to treat patients. Anything that helps push iPS cells into the clinic excites me.”

Stem cells from inside the nose treat Parkinson’s in rats. A type of stem cell found in tissue that in humans would be thrown out after sinus surgery was retrieved from rats and then injected into the parts of their brains that do not function properly in Parkinson’s disease (PD). After 12 weeks the cells had migrated to where they were needed and matured into the type of nerve cell needed to cure PD and improved the function of the animals.

The cells, called inferior turbinate stem cells, could be a way to use a patient’s own stem cells as therapy for PD and avoid issues of immune rejection of donor cells, which may or may not be an issue in the brain, but this would remove a layer of risk. The work by a team at the University of Bielefeld and Dresden University of Technology in Germany was published in the journal Stem Cells Translational Medicine and the Houston Chronicle picked up the journal’s press release.

A time to kill, a time to heal: cells linked to aging also help heal wounds

Senescent cells, so called because of the role they play in the aging process, have acquired a bit of a bad reputation.

Yet new research from the Buck Institute suggests that these cells may not be so bad after all.

Buck Institute faculty Judith Campisi and Postdoc Marco Demaria. [Credit: The Buck Institute]

Buck Institute Professor Judith Campisi and Postdoc Marco Demaria. [Credit: The Buck Institute]

Reporting in today’s issue of Developmental Cell, Buck Institute scientists have found that, while senescent cells do indeed contribute to cellular aging and age-related diseases, they also play an important role in healing wounds. Furthermore, the team has identified the specific molecule in senescent cells that does the healing—pointing to a new therapy that could harness the good aspects of senescent cells, while flushing out the bad.

As we age, so do our cells. During cellular senescence, cells begin to lose their ability to grow and divide. The number of so-called senescent cells accumulates over time, releasing molecules thought to contribute to aging and age-related diseases such as arthritis and some forms of cancer.

But experiments led by Buck Institute Professor Judith Campisi and postdoctoral fellow Marco Demaria revealed that following a skin wound, cells that produce collagen and that line the blood vessels become senescent, and lose the ability to divide. Instead, they accelerate wound healing by secreting a growth factor called PDGF-AA. And once the wound was healed, the cells lost their senescence and shifted back into their normal state.

Because cellular senescence has long been linked to aging and age-related diseases, some research has been focused on finding ways to flush out senescent cells entirely. But the findings by the Buck Institute team throw a wrench in that idea, by revealing that these cells do in fact serve an important purpose.

According to Campisi, there is still a lot to learn:

“It is essential that we understand the full impact of senescence. The possibility of eliminating senescent cells holds great promise and is one of the most exciting avenues currently being explored in efforts to extend healthspan. This study shows that we can likely harness the positive aspects of senescence to ensure that future treatments truly do no harm.”

Stem cells and professional sports: a call for more science and less speculation

In the world of professional sports, teams invest tens of millions of dollars in players. Those players are under intense pressure to show a return on that investment for the team, and that means playing as hard as possible for as long as possible. So it’s no surprise that players facing serious injuries will often turn to any treatment that might get them back in the game.

image courtesy Scientific American

image courtesy Scientific American

A new study published last week in 2014 World Stem Cell Report (we blogged about it here) highlighted how far some players will go to keep playing, saying at least 12 NFL players have undergone unproven stem cell treatments in the last five years. A session at the recent World Stem Cell Summit in San Antonio, Texas showed that football is not unique, that this is a trend in all professional sports.

Dr. Shane Shapiro, an orthopedic surgeon at the Mayo Clinic, says it was an article in the New York Times in 2009 about two of the NFL players named in the World Stem Cell Report that led him to becoming interested in stem cells. The article focused on two members of the Pittsburgh Steelers team who were able to overcome injuries and play in the Super Bowl after undergoing stem cell treatment, although there was no direct evidence the stem cells caused the improvement.

“The next day, the day after the article appeared, I had multiple patients in my office with copies of the New York Times asking if I could perform the same procedure on them.”

Dr. Shapiro had experienced what has since become one of the driving factors behind many people seeking stem cell therapies, even ones that are unproven; the media reports high profile athletes getting a treatment that seems to work leading many non-athletes to want the same.

“This is not just about high profile athletes it’s also about older patients, weekend warriors and all those with degenerative joint disease, which affects around 50 million Americans. Currently for a lot of these degenerative conditions we don’t have many good non- surgical options, basically physical therapy, gentle pain relievers or steroid injections. That’s it. We have to get somewhere where we have options to slow down this trend, to slow down the progression of these injuries and problems.”

Shapiro says one of the most popular stem cell-based approaches in sports medicine today is the use of plasma rich platelets or PRP. The idea behind it makes sense, at least in theory. Blood contains platelets that contain growth factors that have been shown to help tissue heal. So injecting a patient’s platelets into the injury site might speed recovery and, because it’s the patient’s own platelets, the treatment probably won’t cause any immune response or prove to be harmful.

That’s the theory. The problem is few well-designed clinical trials have been done to see if that’s actually the case. Shapiro talked about one relatively small, non-randomized study that used PRP and in a 14-month follow-up found that 83% of patients reported feeling satisfied with their pain relief. However, 84% of this group did not have any visible improved appearance on ultrasound.

He is now in the process of carrying out a clinical trial, approved by the Food and Drug Administration (FDA), using bone marrow aspirate concentrate (BMAC) cells harvested from the patient’s own bone marrow. Because those cells secrete growth factors such as cytokines and chemokines they hope they may have anti-inflammatory and regenerative properties. The cells will be injected into 25 patients, all of whom have arthritic knees. They hope to have results next year.

Dr. Paul Saenz is a sports medicine specialist and the team physician for the San Antonio Spurs, the current National Basketball Association champions. He says that sports teams are frequently criticized for allowing players to undergo unproven stem cell treatments but he says it’s unrealistic to expect teams to do clinical studies to see if these therapies work, that’s not their area of expertise. But he also says team physicians are very careful in what they are willing to try.

“As fervent as we are to help bring an athlete back to form, we are equally fervent in our desire not to harm a $10 million athlete. Sports physicians are very conservative and for them stem cells are never the first thing they try, they are options when other approaches have failed.”

Saenz said while there are not enough double blind, randomized controlled clinical trials he has seen many individual cases, anecdotal evidence, where the use of stem cells has made a big difference. He talked about one basketball player, a 13-year NBA veteran, who was experiencing pain and mobility problems with his knee. He put the player on a biologic regimen and performed a PRP procedure on the knee.

“What we saw over the next few years was decreased pain, and a dramatic decrease in his reliance on non-steroidal anti inflammatory drugs. We saw improved MRI findings, improved athletic performance with more time on court, more baskets and more rebounds.”

But Saenz acknowledges that for the field to advance anecdotal stories like this are not enough, well-designed clinical trials are needed. He says right now there is too much guesswork in treatments, that there is not even any agreement on best practices or standardized treatment protocols.

Dr. Shapiro says for too long the use of stem cells in sports medicine has been the realm of individual physicians or medical groups. That has to change:

“If we are ever to move forward on this it has to be opened up to the scientific community, we have to do the work, do the studies, complete the analysis, open it up to our peers, report it in a reputable journal. If we want to treat the 50 million Americans who need this kind of therapy we need to go through the FDA approval process. We can’t just continue to treat the one patient a month who can afford to pay for all this themselves. “

Stem Cell Stories that Caught our Eye: Stem Cell Summit Roundup, Spinal Cords in a Dish and Stem Cell Tourism in the NFL

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Success at the World Stem Cell Summit. This week some of the biggest names in regenerative medicine descended upon San Antonio, Texas for the annual summit. Along with researchers from the world’s top universities, institutions and companies were members of CIRM, including CIRM President and CEO C. Randall Mills.

We’ve been publishing top highlights from the Summit all week here on the Stem Cellar. There’s also been detailed coverage in the local San Antonio press, including the local ABC station. And if you’d like to find out more about this year’s conference, be sure to visit @WSCSummit and #WSC14 on Twitter.

Scientists have found a way to grow spinal cords from embryonic stem cells in a petri dish. [Credit: Abigail Tucker/ MRC Centre for Developmental Neurobiology/ Wellcome Images.]

Scientists have found a way to grow spinal cords from embryonic stem cells in a petri dish. [Credit: Abigail Tucker/ MRC Centre for Developmental Neurobiology/ Wellcome Images.]

Growing Spinal Cords in the Lab. Tissue engineering, the process of using stem cells to build new tissues and organs, has been the Holy Grail for regenerative medicine. And while there has been some progress with engineering some organs, others—especially the spinal cord—have proven far more difficult. This is because the biodegradable scaffolding cannot be made correctly to grow complex and intricately connected nerve cells.

But now, a research team in Germany has grown complete spinal cords in the lab, pointing to a new strategy for treating those with irreparable spinal cord injuries.

As reported in The Guardian this week, Andrea Meinhardt of the Dresden University of Technology and her colleagues worked around the problem of scaffolding by employing a new method called self-directed morphogenesis, first developed by the late Yoshiki Sasai. According to The Guardian‘s Mo Costandi:

“Self-directed morphogenesis is a method for growing embryonic stem cells in a three-dimensional suspension. Cells grown in this way can, when fed the right combination of signaling molecules, go through the motions of development and organize themselves to form complex tissues such as eyes, glands and bits of brain.”

While preliminary, this research offers immense promise towards the ultimate goal: reversing the devastating effects of spinal cord injuries.

Stem Cells and the NFL. Despite the best efforts of experts, stem cell tourism continues to proliferate. A new study published this week in 2014 World Stem Cell Report (a special supplement to Stem Cells and Development) describes the latest example of people seeking unproven stem cell treatments: this time in the NFL.

New research from Rice University is suggesting that some NFL players are seeking out unproven stem cell treatments—oftentimes traveling abroad without fully understanding the risks. This poses serious problems not only for players but also for the NFL as a whole. As Co-lead author Kirsten Matthews elaborated in a news release:

“With the rise of new and unproven stem cell treatments, the NFL faces a daunting task of trying to better understand and regulate the use of these therapies in order to protect the health of its players.”

Specifically, 12 NFL players are known to have received unproven treatments at some point during the last five years, including star quarterback Peyton Manning who we’ve blogged about before The authors caution that high-profile players broadcasting that they are receiving these unproven therapies could influence regular patients who are also desperate for cures.

In order to fix this growing problem, the authors recommend the NFL review and investigate these unproven stem cell treatments with the help of an independent committee of medical professionals. Finally, they suggest that the NFL could support stem cell research here in the United States—so that proven, effective stem cell-based treatments could more quickly enter the clinic.

At World Stem Cell Summit: Why results in trials repairing hearts are so uneven

Just as no two people are the same, neither are the cells in their bone marrow, the most common source of stem cells in clinical trials trying to repair damage after a heart attack. Doris Taylor of the Texas Heart Institute in Houston, which is just a couple hours drive from the site of this year’s World Stem Cell Summit in San Antonio, gave a key note address this morning that offered some good reasons for the variable and often disappointing results in those trials, as well as some ways to improve on those results.

THI's Dr. Doris Taylor

THI’s Dr. Doris Taylor

The cells given in a transplant derived from the patient’s own bone marrow contain just a few percent stem cells and a mix of adult cells, but for both the stem and adult cells the mix is highly variable. Taylor said that in essence we are giving each patient a different drug. She discussed a series of early clinical trials in which cell samples from each patient were banked at the National Heart and Lung and Blood Institute. There they could do genetic and other analysis on the cells and compare that data with how each individual patient faired.

In looking at the few patients in each trial that did better on any one of three measures of improved heart function, they were indeed able to find certain markers that predicted better outcome. In particular they looked at “triple responders,” those who improved in all three measures of heart function. They found there were both certain types of adult cells and certain types of stem cells that seemed to result in improved heart health.

They also found that two of the strongest predictors were gender and age. Women generally develop degenerative diseases of aging like heart disease at an older age than men and since many consider aging to be a failure of our adult stem cells, it would make sense that women have healthier stem cells.

Taylor went on to discuss ways to use this knowledge to improve therapy outcomes. One way would be to select for the more potent cells identified in the NHLBI analysis. She mentioned a couple trials that did show better outcomes using cells derived from heart tissue. One of those is work that CIRM funds at Cedars-Sinai in Los Angeles.

Another option is replace the whole heart and she closed with a review of what is probably her best-known work, trying to just that. In rats and pigs, she has taken donor hearts and used soap-like solutions to wash away the living cells so that all that is left behind are the proteins and sugars that make of the matrix between cells. She then repopulates the scaffolds that still have the outlines of the chambers of the heart and the blood vessels that feed them, with cells from the recipient animal. She has achieved partially functional organs but not fully functional ones. She—along with other teams around the world—is working on the remaining hurdles to get a heart suitable for transplant.

Don Gibbons

CIRM-Funded Scripps Team Replicates Pain in a Lab Dish; Seeks New Treatments for Chronic Sufferers

Pain hurts but it also protects. Thanks to nerve cells called sensory neurons, which weave their nerve fibers throughout our skin and other tissues, we are alerted to dangerous events like touching a hot plate or even to the sense of having a full bladder.

However, trauma such as a spinal cord injury or diseases like HIV and diabetes can damage sensory neurons and cause chronic pain that debilitates rather than protects those affected. Sadly, conventional pain treatments are usually not effective for the stinging, burning, tingling and numbness associated with this type of pain. Clearly, new innovations are needed.

baldwin_3

These induced sensory neurons could be useful in the testing of potential new therapies for pain, itch and related conditions. Credit: Baldwin Lab, The Scripps Research Institute

Last week, a CIRM-funded research team from The Scripps Research Institute, reported in Nature Neuroscience that they developed a technique, which induces human skin cells to transform into sensory neurons in a petri dish. Up until now, the field mostly relied on mouse studies due to the difficulty of collecting and growing human sensory neurons in the lab. This may explain the lack of success in clinical trials for treating chronic pain. As co-lead author Joel Blanchard, a PhD candidate in Kristin Baldwin’s laboratory, stated in the institute’s press release:

“Mouse models don’t represent the full diversity of the human response. [With these human sensory neurons] we can start to understand how individuals respond uniquely to pain, cold, itch and so on.”

Kevin Eade, research associate, and Joel Blanchard, graduate student, co-lead authors of the report  Credit: Cindy Brauer, The Scripps Research Institute

Kevin Eade, research associate, and Joel Blanchard, graduate student, co-lead authors of the report. Credit: Cindy Brauer, The Scripps Research Institute

To generate the nerve cells, the Baldwin research team inserted, into human skin cells, a combination of genes known to produce proteins that are key controllers of sensory neuron function. The resulting cells had the appearance of sensory neurons and responded appropriately when exposed to heat in the form of the active ingredient in chili peppers as well as activating a cold response when exposed to menthol. Adding more confidence to these results, an independent research team from the Harvard Stem Cell Institute reported in the same Nature Neuroscience   issue and in a press release that they too had successfully generated human sensory neurons from skin cells.

This direct reprogramming of one cell type directly into another is a variant of the induced pluripotent stem cell (iPS) technique in which a cell, often skin, is first reprogrammed into an embryonic stem cell-like state and then coaxed to form into virtually any cell type of the body.

Now that the Baldwin lab has nailed down the recipe for making human sensory neurons, they now can seek out treatments to bring relief to chronic pain sufferers. Dr. Baldwin looks forward to this future work:

Kristin Baldwin, Associate Professor Department of Molecular and Cellular Neuroscience. Credit: The Scripps Research Institute

Kristin Baldwin
Associate Professor
Credit: The Scripps Research Institute

“This method is rapid, robust and scalable. Therefore we hope that these induced sensory neurons will allow our group and others to identify new compounds that block pain and itch and to better understand and treat neurodegenerative disease and spinal cord injury.”

Watch the short video below to hear from a pioneer of direct reprogramming of nerve cells, CIRM grantee Marius Wernig of Stanford University:

Searching for a Cure for HIV/AIDS: Stem Cells and World AIDS Day

World-AIDS-Day

It’s been 26 years since the first World AIDS Day was held in 1988—and the progress that the international scientific community has made towards eradicating the disease has been unparalleled. But there is much more work to be done.

One of the most promising areas of HIV/AIDS research has been in the field of regenerative medicine. As you observe World AIDS Day today, we invite you to take a look at some recent advances from CIRM-funded scientists and programs that are well on their way to finding ways to slow, halt and prevent the spread of HIV/AIDS:

Calimmune’s stem cell gene modification study continues to enroll patients, show promise:
Calimmune Approved to Treat Second Group in HIV Stem Cell Gene Modification Study

Is a cure for HIV/AIDS possible? Last year’s public forum discusses the latest on HIV cure research:


Town Hall: HIV Cure Research

The Stem Cell Agency’s HIV/AIDS Fact Sheet summarizes the latest advances in regenerative medicine to slow the spread of the disease.

And for more on World AIDS Day, follow #WorldAIDSDay on Twitter and visit WorldAIDSDay.org.

Using stem cells paves new approach to treating a blistering skin disease

Imagine a child not being able to run or jump or just roll around, for fear that any movement could strip away their skin and leave them with open, painful wounds. That’s what life is like for children with a nasty genetic disease called epidermolysis bullosa or EB. The slightest touch can cause their skin to peel off. People with the disease often die in their late teens or early 20’s from skin cancer, caused by repeated cycles of skin wounding and healing.

Now Stanford researchers, funded by the stem cell agency, have found a way to correct the faulty gene and grow healthy skin, a technique that could completely change the lives of children with EB. This new approach, which the researchers call “therapeutic reprogramming”, is reported in the journal Science Translational Medicine

In the study the researchers took skin cells from patients with EB and reprogrammed them to become induced pluripotent stem (iPS) cells that have the ability to become any of the other cells in the body. They then replaced the faulty gene that caused that particular form of EB and then turned the cells into keratinocytes, the cells that make up most of our outer layer of skin. When they grafted these cells onto the back of laboratory mice they grew into normal human skin.

In a news release about the work, Dr. Anthony Oro, one of the senior authors of the paper, says the work represents a completely different approach to treating EB.

“Normally, treatment has been confined to surgical approaches to repair damaged skin, or medical approaches to prevent and repair damage. But by replacing the faulty gene with a correct version in stem cells, and then converting those corrected stem cells to keratinocytes, we have the possibility of achieving a permanent fix — replacing damaged areas with healthy, perfectly matched skin grafts.”

One of the key words in that quote is “healthy”. Because the skin cells that they got from the patient probably already included some that had a skin cancer-causing mutation, the researchers carefully screened the cells to make sure they removed any that looked suspicious.

Oro says tests showed the resulting skin from these iPS cells was very similar to human skin made from normal keratinocytes.

“The most difficult part of this procedure is to show not just that you can make keratinocytes from the corrected stem cells, but that you can then use them to make graftable skin. What we’d love to do is to be able to give patients healthy skin grafts on the areas that they bang a lot, such as hands and feet and elbows — those places that don’t heal well. That alone would significantly improve our patients’ lives. We don’t know how long these grafts might last in humans; we may need some improvements. But I think we’re getting very close.”

Having seen that this works in mice the team are now eager to see if they can replicate their results in people. With CIRM support they have already been working with the Food and Drug Administration (FDA) to pave the way for that to happen. Dr. Marius Wernig, one of the senior authors of the paper, says that focus on patients is driving their work:

“CIRM made sure that we were always keeping in mind the need to translate our results to the clinic. Now we’ve shown that this approach that we call ‘therapeutic reprogramming’ works well with human cells. We can indeed take skin cells from people with epidermolysis bullosa, convert them to iPS cells, replace the faulty collagen 7 gene with a new copy, and then finally convert these cells to keratinocytes to generate human skin. It is almost like a fountain of youth that, in principle, produces an endless supply of new, healthy skin from a patient’s own cells.”