The sparrow’s dying song: a possible path toward natural, stem cell-based repair of human brain diseases

Songbird research? How the heck could studying tweeting birds lead to advancements in human health?

At a first glance, biological research in other organisms like bacteria, yeast, flies, mice and birds can seem frivolous and a waste of taxpayer money. Yet it’s astonishing how we humans share very similar if not identical functions at a cellular level with our fellow creatures on Earth. So unraveling underlying biological processes in less complex animals is essential to better understanding human biology and to finding possible paths for treating human disease.

Gambel's White-crown sparrow: could its song unlock methods for repairing the brain? (photo courtesy Lip Kee, wikimedia commons)

Gambel’s White-crown sparrow: could its song unlock methods for repairing the brain? (photo courtesy Lip Kee, wikimedia commons)

Case in point: research published in the Journal of Neuroscience last week suggests that studying brain stem cells in song birds could one day lead to methods for naturally repairing neurodegenerative disorders such as Alzheimer’s disease in humans.

The University of Washington team behind the report studies the seasonal song behavior of Gambel’s white-crown sparrows. During the spring breeding season, the population of cells in the sparrow’s brain that are responsible for singing double in number. This cell growth helps the bird to be at its peak singing performance for attracting mates and staking its territory. As breeding season recedes, these brain cells die away naturally and the sparrow’s song, no longer needed, deteriorates. When the next spring arrives the brain cells will grow again.

Audio tracing's of the sparrow's song show its degradation after breeding season each year. (T. Larson/Univ. of Washington)

Audio tracings of the sparrow’s song show its degradation after breeding season each year. (image: T. Larson/Univ. of Washington)

The team’s fascinating discovery is that the dying brain cells themselves appear to provide a signal that tells brain stem cells to multiply for the next breeding season. The scientific term for the cell die-off is called programmed cell death, or apoptosis (pronounced A-POP-TOE-SIS). There are chemicals available to block apoptosis signals. And when the research team administered these anti-apoptosis chemicals at the end of the breeding season, there was a significant reduction in newly dividing brain stem cells. This result shows that new brain stem cell growth depends on the death of brain cells associated with song.

The next step in the project is to identify the signal from the dying cells that stimulates new brain stem cell growth. Once identified, that signal could be harnessed to naturally stimulate new brain stem growth to help repair the loss of brain cells seen in aging, Parkinson’s or Alzheimer’s disease.

As he mentions in a university news story, Dr. Eliot Brenowitz, the senior author of the report, is optimistic about their prospects:

“There’s no reason to think what goes on in a bird brain doesn’t also go on in mammal brains, in human brains. As far as we know, the molecules are the same, the pathways are the same, the hormones are the same. That’s the ultimate purpose of all this, to identify these molecular mechanisms that will be of use in repairing human brains.”

To learn about CIRM-funded projects related to neurodegenerative disorders, visit our Alzheimer’s and Parkinson’s online fact sheets.

Stem cell stories that caught our eye: heart disease, premature infants and incontinence

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Decoding heart health and genetics in Asians. A study from CIRM grantee Joseph Wu at Stanford may point the way to using stem cells to solve problems caused by too many drugs being tested predominantly on white males. Ethnic variations to drug response too often get ignored in current clinical trials.

The Stanford team has used iPS type stem cells to create a disease-in-a-dish model of a genetic mutation that effects 500 million people, but mostly East Asians. The mutation disables the metabolic protein called ALDH2 and results in increased risk of heart disease and increases the risk of death after a heart attack. By growing heart muscle from stem cells made from the skin of patients with the mutation his team found that the defect alters the way the heart cells react to stress.

Wu suggests that drug companies one day may keep banks of iPS cells from various ethnic groups to see how their responses to drugs differ. Science Daily ran the university’s press release.

Stem cells may treat gut disease in premies.
A laundry list of medical challenges confronts premature babies, but few are as deadly as the intestinal disease that goes by the name NEC, or necrotizing enterocolitis. It strikes with no notice and can kill within hours.

140925100256-largeA team at the University of Ohio reports they have developed what may be a two-pronged attack on the disease. First, they found a biomarker that can predict which infants might develop NEC, and second they have tested stem cells for treating the intestinal damage done by the disease. In an animal model they found that a type of stem cell found in bone marrow, mesenchymal stem cells, can reduce the inflammation that causes the damage and that neural stem cells can repair the nerve connections disrupted by the inflammation.

While this explanation sounds straight forward, getting to that potential intervention was anything but a simple path. The university wrote an extensive feature detailing the many years and many steps the research team took to unravel this who-done-it that involves the gut’s extensive “brain” and immune system. Science Daily picked up the piece.

We recently posted a video about a project we fund using stem cells to develop a treatment for irritable bowel disease.

Fat stem cells tested in incontinence. For far too many older women laughing and coughing can lead to embarrassing bladder leaks. Several groups are working with various types of stem cells to try to strengthen the urinary sphincter and help patients lead a more normal life. A team at Cleveland Clinic now reports some positive results using the most easily accessed form of stem cells, those in fat.

They harvested patients’ own fat stems cells, grew them in the lab for three weeks and then mixed them with a collagen gel from cows to hold them in place before injecting them into the sphincter. Three of five patients passed “the cough test” after one year. Good results, but clearly more work needs to be done to yield more uniform results. Stem Cells Translational Medicine published the research and issued this press release.

Some researcher suspect starting with an earlier stage, more versatile stem cell might yield better results. One of our grantees is developing cells to treat incontinence starting with reprogrammed iPS type stem cells.

New course looks at where fact and fiction overlap. I am a big fan of almost any effort to blend science and the arts. A professor at the University of Southern California seems to agree. CIRM grantee Gage Crump will be teaching a course next spring about science fiction and stem cells.

The university says the course, Stem Cells: Fact and Fiction, will range from babies born with three biological parents to regrown body parts. The course will explore the current state of stem cell biology as it closes the gap between reality and the sci fi visions of authors such as Margaret Atwood and Philip K. Dick. Crump describes it as:

“a mad scientist type of course, where we go through some real science but also [think] about what’s the future of science.”

Don Gibbons

Cells’ Knack for Hoarding Proteins Inadvertently Kickstarts the Aging Process

Even cells need to take out the trash—mostly damaged or abnormal proteins—in order to maintain a healthy clean environment. And scientists are now uncovering the harmful effects when cells instead begin to hoard their garbage.

Cells' penchant for hoarding proteins may spur the cellular aging process, according to new research.

Cells’ penchant for hoarding proteins may spur the cellular aging process, according to new research. [Labyrinth (1986)]

Aging, on the cellular level is—at its core—the increasing inability for cells to repair themselves over time. As cells begin to break down faster than they can be repaired, the risk of age-related diseases escalates. Cancer, heart disease and neurological conditions such as Alzheimer’s disease are some of aging’s most deadly effects.

As a result, scientists have long searched for ways to give our cells a little help and improve our quality of life as we age. For example, recent research has pointed to a connection between fasting (restricting calories) and a longer lifespan, though the molecular mechanisms behind this connection remain somewhat cryptic.

But now Dr. Daniel Gottschling, a scientist at the Fred Hutchinson Cancer Research Center and an aging expert, has made extraordinary progress toward solving some of the mysteries of aging.

In two studies published this month in the Proceedings of the National Academy of Sciences and eLife, Gottschling and colleagues discover that a particular long-lasting protein builds up over time in certain cell types, causing the buildup of a protein hoard that damages the cell beyond repair.

Clearing out the Cobwebs

Some cells, such as those that make up the skin or that reside in the gut, are continually replenished by a stockpile of adult stem cells. But other cells, such as those found in the eye and brain, last for years, decades and—in some cases—our entire lifetimes.

Within and surrounding these long-lived cells are similarly long-lived proteins which help the cell perform essential functions. For example, the lens of the human eye, which helps focus light, is made up of these proteins that arise during embryonic development and last for a lifetime.

Dr. Daniel Gottschling is looking to unlock the mysteries behind cellular aging.

Dr. Daniel Gottschling is looking to unlock the mysteries behind cellular aging. [Image courtesy of the Fred Hutchinson Cancer Research Center]

“Shortly after you’re born, that’s it, you get no more of that protein and it lives with you the rest of your life,” explained Gottschling.

As a result, if those proteins degrade and die, new ones don’t replace them—the result is the age-related disease called cataracts.

But scientists weren’t exactly sure of the relationship between these dying proteins and the onset of conditions such as cataracts, and other disease related to aging. Did these conditions occur because the proteins were dying? Or rather because the proteins were building up to toxic levels?

So Gottschling and his team set up a series of experiments to find out.

Stashing Trash

They developed a laboratory model by using yeast cells. Interestingly, yeast cells share several key properties with human stem cells, and are often the focus of early-stage research into basic, fundamental concepts of biology.

Like stem cells, yeast cells grow and divide asymmetrically. In other words, a ‘mother’ cell will produce many ‘daughter’ cells, but will itself remain intact. In general, yeast mother cells produce up to 35 daughter cells before dying—which usually takes just a few days.

 Yeast “mother” cells budding and giving birth to newborn “daughter” cells.  [Image courtesy of Dr. Kiersten Henderson / Gottschling Lab]

Yeast “mother” cells budding and giving birth to newborn “daughter” cells.
[Image courtesy of Dr. Kiersten Henderson / Gottschling Lab]

Here, the research team used a special labeling technique that marked individual proteins that exist within and surrounding these mother cells. These microscopic tracking devices then told researchers how these proteins behaved over the entire lifespan of the mother cell as it aged.

The team found a total of 135 long-lived proteins within the mother cell. But what really surprised them was what they found upon closer examination: all but 21 of these 135 proteins appeared to have no function. They appeared to be trash.

“No one’s ever seen proteins like this before [in aging],” said Nathanial Thayer, a graduate student in the Gottschling Lab and lead author of one of the studies.

Added Gottschling, “With the number of different fragments [in the mother cell], we think they’re going to cause trouble. As the daughter yeast cells grow and split off, somehow mom retains all these protein bits.”

This startling discovery opened up an entirely new set of questions, explained Gottschling.

“It’s not clear whether the mother’s trash keeper function is a selfless act designed to give her daughters the best start possible, or if she’s hanging on to them for another reason.”

Hungry, Hoarding Mother Cells

So Gottschling and his team took a closer look at one of these proteins, known as Pma1.

Recent work by the Gottschling Lab found that cells lose their acidity over time, which itself leads to the deterioration of the cells’ primary energy source. The team hypothesized that Pma1 was somehow intricately tied to corresponding levels of pH (high pH levels indicate an acidic environment, while lower pH levels signify a more basic environment).

In the second study published in eLife, led by Postdoctoral Fellow Dr. Kiersten Henderson, the team made several intriguing discoveries about the role of Pma1.

First, they uncovered a key difference between mother and daughter cells: daughter cells are born with no Pma1. As a result, they are far more acidic than their mothers. But when they ramped up Pma1 in the mother cells, the acidity levels in subsequent generations of daughter cells changed accordingly.

“When we boosted levels of the protein, daughter cells were born with Pma1 and became more basic (they had a lower pH), just like their mothers.”

Further examination uncovered the true relationship between Pma1 and these cells. At its most fundamental, Pma1 helps the mother cells eat.

“Pma1 plays a key role in cellular feeding,” said Gottschling. “The protein sits on the surface of cells and helps them take in nutrients from their environment.”

Pma1 gives the mother cell the ability to gorge herself. The more access to food she has, the easier it is for her to produce more daughter cells. By hoarding Pma1, the mother cell can churn out more offspring. Unfortunately, she is also signing her own death certificate—she’s creating a more basic environment that, in the end, proves toxic and contributes to her death.

The hoarding, it turns out, may not all be due to the mother cells’ failure to ‘take out the trash.’ Instead, she wants to keep eating and producing daughters—and hoarding Pma1 allows her to do just that.

“There’s this whole trade off of being able to divide quickly and the negative side is that the individual, the mother, does not get to live as long.”

Together, the results from these two studies provide a huge boost for researchers like Gottschling who are trying to unravel the molecular mysteries of aging. But the process is incredibly intricate, and there will likely be no one simple solution to improving quality of life as we get older.

“The whole issue of aging is so complex that we’re still laying the groundwork of possibilities of how things can go awry,” said Gottschling. “And so we’re still learning what is going on. We’re defining the aging process.”

New Cellular Tracking Device Tests Ability of Cell-Based Therapies to Reach Intended Destination

Therapies aimed at replacing damaged cells with a fresh, healthy batch hold immense promise—but there remains one major sticking point: once you have injected new, healthy cells into the patient, how do you track them and how do you ensure they do the job for which they were designed?

New tracking technique could improve researchers' ability to test potential cell therapies.

New tracking technique could improve researchers’ ability to test potential cell therapies.

Unfortunately, there’s no easy solution. The problem of tracking the movement of cells during cell therapy is that it’s hard to stay on their trail they enter the body. They can get mixed up with other, native cells, and in order to test whether the therapy is working, doctors often have to rely on taking tissue samples.

But now, scientists at the University of California, San Diego School of Medicine and the University of Pittsburgh have devised an ingenious way to keep tabs on where cells go post injection. Their findings, reported last week in the journal Magnetic Resonance in Medicine, stand to help researchers identify whether cells are arriving at the correct destination.

The research team, lead by UCSD Radiology Professor Dr. Eric Ahrens, developed something called a periflourocarbon (PFC) tracer in conjunction with MRI technology. Testing this new technology in patients receiving immune cell therapy for colorectal cancer, the team found that they were better able to track the movement of the cells than with traditional methods.

“This is the first human PFC cell tracking agent, which is a new way to do MRI cell tracking,” said Ahrens in a news release. “It’s the first example of a clinical MRI agent designed specifically for cell tracking.”

They tagged these cells with atoms of fluorine, a compound that normally occurs at extremely low levels. After tagging the immune cells, the researchers could then see where they went after being injected. Importantly, the team found that more than one-half of the implanted cells left the injection site and headed towards the colon. This finding marks the first time this process had been so readily visible.

Ahrens explained the technology’s potential implications:

“The imaging agent technology has been shown to be able to tag any cell type that is of interest. It is a platform imaging technology for a wide range of diseases and applications.”

A non-invasive cell tracking solution could serve as not only as an attractive alternative to the current method of tissue sampling, it could even help fast-track through regulatory hurdles new stem cell-based therapies. According to Ahrens:

“For example, new stem cell therapies can be slow to obtain regulatory approvals in part because it is difficult, if not impossible, with current approaches to verify survival and location of transplanted cells…. Tools that allow the investigator to gain a ‘richer’ data set from individual patients mean it may be possible to reduce patient numbers enrolled in a trial, thus reducing total trial cost.”

What are the ways scientists see stem cells in the body? Check out our Spotlight Video on Magnetic Particle Imaging.

New Videos: Living with Crohn’s Disease and Working Towards a Stem Cell Therapy

Note: the two videos below are also available on our website

She doesn’t want your sympathy. She doesn’t want your admiration. She just wants your understanding.

Rachel Bonner, a sixteen-year-old high school student and founder of the Hope for Crohn’s charity, spoke to the CIRM governing Board on September 10th about what it’s like living with Crohn’s disease. In the eight years since her diagnosis, Rachel has come a long way in talking publicly about her condition:

“I never thought I’d stand up here and admit to wearing a diaper while being in middle school. But Crohn’s turns from a secret struggle to something I want to share with other people. And ultimately have others understand the life of a Crohn’s patient just a bit more. “

Crohn’s disease is a type of inflammatory bowel disease (IBD) in which the intestines are chronically inflamed. Symptoms of Crohn’s include a frequent need to pass bowel movements, constant diarrhea, rectal bleeding, fatigue and loss of appetite.

In a healthy individual, the friendly bacteria living in the gut are ignored by the immune system. But in the case of IBD, the immune cells attack these bacteria as foreign invaders, causing an inflammatory response. The sustained inflammation eventually damages the gut wall causing the symptoms of IBD.

Current therapies for IBD focus solely on treating the inflammation. Dr. Ophir Klein, a CIRM grantee and UCSF researcher, also spoke to the governing Board and described another treatment avenue:

“There’s another component that’s been under-explored and potentially has a lot of impact therapeutically which is the regenerative aspects of the condition because after the inflammation occurs in the gut, the gut needs to heal, and that healing comes from stem cells. “

In his presentation to the Board, Dr. Klein detailed his lab’s work to understand how stem cells regulate the healing of the intestine and to eventually find cures for IBD.

Although Rachel and her doctors have found a treatment sweet spot, which has kept her Crohn’s at bay, she still holds out hope that a cure, perhaps from a stem-cell based therapy, is not too far away:

“Everyday I go to sleep hoping that this treatment sweet spot will work until they find a cure”

Harder, Better, Faster, Stronger: Scientists Work to Create Improved Immune System One Cell at a Time

The human immune system is the body’s best defense against invaders. But even our hardy immune systems can sometimes be outpaced by particularly dangerous bacteria, viruses or other pathogens, or even by cancer.

Salk Institute scientists have developed a new cellular reprogramming technique that could one day boost a weakened immune system.

Salk Institute scientists have developed a new cellular reprogramming technique that could one day boost a weakened immune system.

But what if we could give our immune system a boost when it needs it most? Last week scientists at the Salk Institute for Biological Sciences devised a new method of doing just that.

Reporting in the latest issue of the journal Stem Cells, Dr. Juan Carlos Izpisua Belmonte and his team announce a new method of creating—and then transplanting—white blood cells into laboratory mice. This new and improved method could have significant ramifications for how doctors attack the most relentless disease.

The authors achieved this transformation through the reprogramming of skin cells into white blood cells. This process builds on induced pluripotent stem cell, or iPS cell, technology, in which the introduction of a set of genes can effectively turn one cell type into another.

This Nobel prize-winning approach, while revolutionary, is still a many months’ long process. In this study, the Salk team found a way to shorten the cellular ‘reprogramming’ process from several months to just a few weeks.

“The process is quick and safe in mice,” said Izpisua Belmonte in a news release. “It circumvents long-standing obstacles that have plagued the reprogramming of human cells for therapeutic and regenerative purposes.”

Traditional reprogramming methods change one cell type, such as a skin cell, into a different cell type by first taking them back into a stem cell-like, or ‘pluripotent’ state. But here, the research team didn’t take the cells all the way back to pluripotency. Instead, they simply wiped the cell’s memory—and gave it a new one. As first author Dr. Ignacio Sancho-Martinez explained:

“We tell skin cells to forget what they are and become what we tell them to be—in this case, white blood cells. Only two biological molecules are needed to induce such cellular memory loss and to direct a new cell fate.”

This technique, which they dubbed ‘indirect lineage conversion,’ uses the molecule SOX2 to wipe the skin cell’s memory. They then use another molecule called miRNA 125b to reprogram the cell into a white blood cell.

These newly generated cells appear to engraft far better than cells derived from traditional iPS cell technology, opening the door to therapies that more effectively introduce these immune cells into the human body. As Sanchi-Martinez so eloquently stated:

“It is fair to say that the promise of stem cell transplantation is now closer to realization.”

Stories of Hope: Stroke

Six months after surviving a stroke, Sonia Olea wanted to die. Her right leg was weak, her right arm useless. She had trouble speaking and even small tasks were challenging. Just making a phone call was virtually impossible. One morning, she woke up with her arm pinned in an awkward, painful position. After finally repositioning it, she wanted to call her fiancé, but knew she couldn’t get the words out. That’s when it hit her.

Sonia has seen first hand how a stroke can rob you of even your most basic abilities.

Sonia has seen first hand how a stroke can rob you of even your most basic abilities.

“I thought, I’m only 32,” says Sonia. “How could this be happening to me?”

Nobody really had an answer. A stroke occurs when a blood clot blocks a vessel in the brain and cuts off blood flow. Brain cells begin to die within minutes when they are deprived of oxygen and nutrients. Stroke rates are on the rise for young adults for a variety of reasons but no one could pinpoint specifically what caused hers.

Slowly, Sonia fought back from her depression and realized she could do this. She would find a way to recover. Just one year later, she got a call from Stanford University; asking if she would be willing to participate in a cutting-edge, stem cell-based clinical trial.

Was she ever. The answer, says Sonia, was a no-brainer.

Rescuing Brain Cells
Led by CIRM grantee Gary Steinberg, M.D., Ph.D., chairman of the Department of Neurosurgery at Stanford School of Medicine, the early phase clinical trial tested the safety of transplanting bone marrow stem cells into the brain. It was a revolutionary approach.

“The old notion was that you couldn’t recover from a stroke after around three months,” says Steinberg. “At that point, the circuits were completely dead—and you couldn’t revive them.”

While this was partially true, it was thought that brain cells, or neurons, just outside the stroke damage might be saved. Steinberg and collaborators at the University of Pittsburgh recognized that stem cells taken from bone marrow wouldn’t transform into functioning neurons. However, the transplanted cells could release molecules that might rescue neurons that were impaired, but not yet dead.

Brain Surgery
Sonia had surgery to transplant bone marrow stem cells into her brain in late May 2013. The improvement was almost instantaneous. “When I woke up, my speech was strong, I could lift up my feet and keep them in the air, I even raised my right hand,” says Sonia. Though the trial was primarily designed to study the stem cell therapy’s safety, researchers were also interested in its effectiveness.

“Sonia was one of our two remarkable patients who got better the day after surgery and continued to improve throughout the year,” says Steinberg. 18 patients in total were treated in that study.

Although Sonia’s treatment results are still very preliminary, they bode well for a separate CIRM-funded stroke research project also led by Steinberg. In this study, cells grown from embryonic stem cells will be turned into early-stage neuron, or brain, cells and then transplanted into the area of stroke damage. The team has found that transplanting these neural cells into mice or rats after a stroke helps the animals regain strength in their limbs. The team is busy working out the best conditions for growing these neural cells in order to take them into clinical trials.

In the meantime, Sonia continues to improve. “My leg is about 95 percent better and my arm is around 60 percent there,” says Sonia. “My speech isn’t perfect, but I can talk and that’s something I never could have done before the surgery.”

The added function has made a huge difference in her quality of life. She can walk, run, drive a car, call a restaurant to make a dinner reservation—simple things she took for granted before having a stroke. But most importantly, she has confidence in the future.

“Everything is good,” says Sonia, “and it’s only going to get better.”

To learn about CIRM-funded stroke research, visit our Stroke Fact Sheet. Read more about Sonia’s Story of Hope on our website.

Stem cell stories that caught our eye: first iPS clinical trial, cancer metabolism and magnates helping heal hearts

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

First clinical trial with reprogrammed stem cells.
Today, a Japanese woman became the first patient to be treated with cells derived from reprogrammed iPS-type stem cells. The patient received cells matured into a type of cell damaged in the most common form of blindness, age-related macular degeneration.

Those cells, a normal part of the eye’s retina, were made from stem cells created from a skin sample donated by the patient several months ago. In the intervening time the resulting retinal cells have been tested in mice and monkeys to make sure they will not cause tumors. Because the cells have the same genes as the patient, researchers believe they may not be rejected by the patient’s immune system in the absence of immune suppressive drugs—the beauty of iPS technology.

Right now, that technology is much too cumbersome and time consuming to result in a broadly applicable therapy. But if this first clinical trial proves the immune system get-out-of-jail-free theory, it should intensify efforts to make iPS technology more efficient.

When Japanese authorities gave permission to treat the first patient earlier this week Popular Science provided an easy read version of the story and Nature News provided a bit more detail.

Cancer cells don’t handle their sugar well. Sugar has a bad rep these days. Now, it looks like manipulating sugar metabolism might lead to ways to better treat leukemia and perhaps, make therapies less toxic to normal cells. It turns out cancer cells are much more sensitive to changes in sugar level than normal blood stem cells or the intermediate cells that give rise the various branches of the blood system.

David Scadden at the Harvard Stem Cell Institute has long studied the role of the stem cell's environment in its function.

David Scadden at the Harvard Stem Cell Institute has long studied the role of the stem cell’s environment in its function.

A team led by old friend and colleague at the Harvard Stem Cell Institute, David Scadden, first looked at sugar metabolism in normal blood forming stem cells and their intermediate cells. They found that the parent stem cell and their direct offspring, those intermediate cells, behave differently when faced with various manipulations in sugar level, which makes sense since the intermediate cells are usually much more actively dividing.

But when they manipulated the genes of both types of cells to make them turn cancerous, the cancer cells from both were much more sensitive to changes in sugar metabolism. In a university press release picked up by ScienceCodex David said he hoped to interest drug companies in developing ways to exploit these differences to create better therapies.

Magnets and nanoparticles steer stem cells.
Getting stem cells to where they are needed to make a repair, and keeping them there is a major challenge. A team at Los Angeles’ Cedars-Sinai hospital that we fund (but not for this study) has taken an approach to this problem that is the equivalent of holding your pants up with a double set of button, a belt and suspenders.

Treating damaged hearts in rats they first loaded iron-containing nanoparticles with two types of antibodies, one that recognizes and homes to injured heart tissue and one that attracts healing stem cells. After infusing them into the animal’s blood stream, they placed a magnet over its heart to hold the iron nanoparticles near by. The iron provided the added benefit of letting the team track the cells via magnetic resonance imaging (MRI) to verify they did get to and stay where they were needed.

In a press release from the hospital picked up by ScienceDaily the lead researcher Eduardo Marban said:

“The result is a kind of molecular matchmaking,”

The study was published in Nature Communications and you can read about other work we fund in Marban’s lab trying to figure out once you get the stem cells to the heart exactly how do they create the repair.

Reprogrammed stem cells turned into white blood cells. We have written often about the difficulties of getting stem cells to create fully mature blood cells. Last week we talked about a Wisconsin team breaking the barrier for red blood cells. Now, a team at the Salk Institute is reporting success for white blood cells.

Starting with iPS-type stem cells they got the mature white cells via a two-step process. First they manipulated one gene called Sox2 to get the stem cells to become the right intermediate cells. Then they used a gene-regulating molecule called a micro-RNA to get the middleman cells to mature into white blood cells.

In a press release from the Salk, lead researcher Juan Carlos Izpisua Belmonte noted the clinical importance of the work:

“In terms of potential clinical applications, the hematopoietic system represents one of the most suitable tissues for stem cell-based therapies. . .”

The team published the research in the journal Stem Cells and the web portal BioSpace picked up the release.

Book on early spinal cord injury clinical trial. The title of a book on the first ever clinical trial using cells from embryonic stem cells kind of says it all: Inevitable Collision: The Inspiring Story that Brought Stem Cell Research to Conservative America.

Katy Sharify's experience in the first embryonic stem cell trial is featured in a new book and she discussed it in a video from a CIRM workshop.

Katy Sharify’s experience in the first embryonic stem cell trial is featured in a new book and she discussed it in a video from a CIRM workshop.


The book details the personal stories of the first and fifth patients in the spinal cord injury trial conducted by Geron. That company made the financial decision to end its stem cell product development in favor of its cancer products. But the spinal cord injury trial is now set to restart, modified to treat neck injuries instead of back injuries and at higher doses, through CIRM funding to the company that bought the Geron stem cell business, Asterias.

In a press release from the publisher, the book’s author explained her goal:

“Through this book I hope to bridge the gap between science and religion and raise awareness of the importance and power of stem cell research.”

The fifth patient in the Geron study, Katie Sharify, is featured in our “Stories of Hope” that have filled The Stem Cellar this week.

Don Gibbons

Stories of Hope: Sickle Cell Disease

This week on The Stem Cellar we feature some of our most inspiring patients and patient advocates as they share, in their own words, their Stories of Hope.

Adrienne Shapiro pledged she would give her daughter Marissa the best possible life she could have—wearing herself out if necessary. Her baby girl had sickle cell disease, an inherited disorder in which the body’s oxygen-carrying red blood cells become crescent shaped, sticky, rigid, and prone to clumping—blocking blood flow. Doctors warned Adrienne that Marissa might not live to see her first birthday. When Marissa achieved that milestone, they moved the grim prognosis back a year, and then another year, and then another.

Adrienne has seen first hand how difficult it is to live with this blood disease.

Adrienne has lived through several generations of the inherited blood disease.

Adrienne worked tirelessly to help Marissa. “I was constantly asking questions,” Shapiro says. And for a long time, it worked.

However, things began to unravel for Marissa as she reached adulthood. A standard treatment for sickle cell disease—and the excruciating pain caused by blocked blood vessels—is regular blood transfusions. A transfusion floods the body with healthy, round red blood cells, lowering the proportion of the deformed, ‘sickle-shaped’ cells. But when she was 20, a poorly matched blood transfusion triggered a cascade of immune problems. Later, surgery to remove her gall bladder set off a string of complications and her kidneys shut down temporarily. After that, her immune system couldn’t take any more insults. Now, at age 36, she’s hypersensitive.

“She can’t be transfused. She can’t even have tape next to her skin without her body reacting,” Adrienne said.

Pain control is the newest and continuing nightmare. Adrienne tells harrowing stories of long waits in hospital emergency rooms while her daughter suffers, followed by maddening arguments with staff reluctant to provide enough drugs to control the intense pain when her daughter is finally admitted.

“When she was a kid, everyone wanted to make her feel good,” Adrienne says. “But when we moved from the pediatric side to the adult side, they treated her as a drug seeker and me as an enabler. It’s such a slap in the face.”

For Adrienne, the story is all too familiar. She is the third generation in her family with a sickle cell child. Another daughter, Casey Gibson, does not have the disease but carries the sickle cell mutation, meaning she could pass it to a child if the father also has the trait. One in 500 African Americans has sickle cell disease, as do 1 in 36,000 Hispanic people.

There is only one sure way to stop this story from repeating for generations to come, Adrienne says, and that’s research. She believes stem cell science will be the answer.

“I’ve been waiting for this science to get to the point where it had a bona fide cure, something that worked. Now we’re actually nearing clinical trials. It’s so close.”

In fact a CIRM-funded project led by Don Kohn, M.D. at UCLA aims to start trials in 2014. Kohn and his team intend to remove bone marrow from the patient and fix the genetic defect in the blood-forming stem cells. Then those cells can be reintroduced into the patient to create a new, healthy blood system.

“Stem cells are our only hope,” Adrienne continues, “It’s my true belief that I’m going to be the last woman in my family to have a child with sickle cell disease. Marissa’s going to be the last child to suffer, and Casey is going to be the last one to fear. Stem cells are going to fix this for us and many other families.”

For more information about CIRM-funded sickle cell disease research, visit our Sickle Cell Disease Fact Sheet. You can read more about Adrienne’s Story of Hope on our website.

Stories of Hope: Spinal Cord Injury

This week on The Stem Cellar we feature some of our most inspiring patients and patient advocates as they share, in their own words, their Stories of Hope.

Katie Sharify had six days to decide: would she let her broken body become experimental territory for a revolutionary new approach—even if it was unlikely to do her any good? The question was barely fathomable. She had only just regained consciousness. A week earlier, she had been in a car crash that damaged her spine, leaving her with no sensation from the chest down. In the confusion and emotion of those first few days, the family thought that the treatment would fix Katie’s mangled spinal cord. But that was never the goal. The objective, in fact, was simply to test the safety of the treatment. The misunderstanding – a cure, and then no cure — plunged the 23-year-old from hope to despair. And yet she couldn’t let the idea of this experimental approach go.

Katie never gave up hope that stem cell-based therapies could help her or others like her living with spinal cord injury.

Katie never gave up hope that stem cell-based therapies could help her or others like her living with spinal cord injury.

Just days after learning that she would never walk again, that she would never know when her bladder was full, that she would not feel it if she broke her ankle, she was thinking about the next girl who might lie in this bed with a spinal injury. If Katie walked away from this experimental approach—what would happen to others that came after her?

Her medical team provided a crash course in stem cell therapy to help Katie think things through. In this case the team had taken stem cells obtained from a five-day old embryo and converted them into cells that support communication between the brain and body. Those cells would be transplanted into the injured spines. Earlier experiments in animal models suggested that, once in place, these cells might help regenerate a patient’s own nerve tissue. But before scientists could do the experiment, they needed to make sure the technique they were using was safe by using a small number of cells, too few to likely have any benefit. And that’s why they wanted Katie’s help in this CIRM-funded trial. They explained the risks. They explained that she was unlikely to derive any benefit. They explained that she was just a step along the way. Even so, Katie agreed. She became the fifth patient in what’s called a Phase I trial: part of the long, arduous process required to bring new therapies to patients. Shortly after she was treated the trial stopped enrolling patients for financial reasons.

That was nearly three years ago. Since then, she has been through an intensive physical therapy program to increase her strength. She went back to college. She tried skiing and surfing. She learned how to make life work in this new body. But as she rebuilt her life she wondered if taking part in the clinical trial had truly made a difference.

“I was frustrated at first. I felt hopeless. Why did I even do this? Why did I even bother?” But soon she began to see how small advances were moving the science forward. She learned the steep challenges that await new therapies. Then this year, she discovered that the research she participated in was deemed to be safe and is about to enter its next phase, thanks to a $14.3 million grant from CIRM to Asterias Biotherapeutics. “This has been my wish from day one,” Katie says.

“It gives me so much hope to know there is an organization that cares and wants to push these therapies forward, that wants to find a cure or a treatment,” she says. “I don’t know what I would do if I thought nobody cared, nobody wanted to take any risks, nobody wanted to put any funding into spinal cord injuries.

“I really have to have some ray of hope to hold onto, and for me, CIRM is that ray of hope.”

For more information about CIRM-funded spinal cord injury research, visit our Spinal Cord Injury Fact Sheet. You can read more about Katie’s Story of Hope on our website.