Bridging the gap: training scientists to speak everyday English

Getting a start in your chosen career is never easy. Without experience it’s hard to get a job. And without a job you can’t get experience. That’s why the CIRM Bridges program was created, to help give undergraduate and Master’s level students a chance to get the experience they need to start a career in stem cell research.

Last week our governing Board approved a new round of funding for this program, ensuring it will continue for another 5 years.

But we are not looking to train just any student; we are looking to recruit and retain students who reflect the diversity of California, students who might not otherwise have a chance to work in a world-class stem cell research facility.

Want to know what that kind of student looks like? What kind of work they do? Well, the Bridges program at City College of San Francisco recently got its latest group of Bridges students to record an “elevator pitch”; that’s a short video where they explain what they do and why it’s important, in language anyone can understand.

They do a great job of talking about their research in a way that’s engaging and informative; no easy matter when you are discussing things as complex as using stem cells to test whether everyday chemicals can have a toxic impact on the developing brain, or finding ways to turn off the chromosome that causes Down’s syndrome.

Regular readers of the CIRM blog know we are huge supporters of anything that encourages scientists to be better communicators. We feel that anyone who gets public funding for their work has an obligation to be able to explain that work in words the public can understand. This is not just about being responsive, there’s also a certain amount of self-interest here. The better the public understands the work that scientists do, and how that might impact their health, the more they’ll support that work.

That’s why one of the new elements we have added to the Bridges program is a requirement for the students to engage in community outreach and education. We want them to be actively involved in educating diverse communities around California about the importance of stem cell research and the potential benefits for everyone.

We have also added a requirement for the students to be directly engaged with patients. Too often in the past students studied solely in the lab, learning the skills they’ll need for a career in science. But we want them to also understand whom these skills will ultimately benefit; people battling deadly diseases and disorders. The best way to do that is for the students to meet these people face-to-face, at a bone marrow drive or at a health fair for example.

When you have seen the face of someone in need, when you know their story, you are more motivated to find a way to help them. The research, even if it is at a basic level, is no longer about an abstract idea, it’s about someone you know, someone you have met.

Even the early worm gets old: study unlocks a key to aging

A new study poses the question, ‘When does aging really begin?’ One glance in the mirror every morning is enough for me to know that regardless of where it begins I know where it’s going. And it’s not pretty.

But enough about me. Getting back to the question about aging, two researchers at Northwestern University have uncovered some clues that may give us a deeper understanding of aging and longevity, and even lead to new ways of improving quality of life as we get older.

The researchers were focused on C. elegans, a transparent roundworm. They initially thought that aging was a gradual process: that it began slowly and then picked up pace as the animal got older. Instead they found that in C. elegans aging begins just as soon as the animal reaches reproductive maturity. It hits its peak of fertility, and it is all downhill from there.

The researchers say that once C. elegans has finished producing eggs and sperm – ensuring its line will continue – a genetic switch is thrown by germline stem cells. This flipped switch begins the aging process by turning off the ‘heat shock response’; that’s a mechanism the body uses to protect cells from conditions that would normally pose a threat or even be deadly.

In a news release Richard Morimoto, the senior author of the study, says that without that protective mechanism in place the aging process begins:

C. elegans has told us that aging is not a continuum of various events, which a lot of people thought it was. In a system where we can actually do the experiments, we discover a switch that is very precise for aging. All these stress pathways that insure robustness of tissue function are essential for life, so it was unexpected that a genetic switch is literally thrown eight hours into adulthood, leading to the simultaneous repression of the heat shock response and other cell stress responses.”

You read that right. In the case of poor old C. elegans the aging process begins just eight hours into adulthood. Of course the lifespan of the worm is only about 3 weeks so it’s not surprising the aging process kicks in quite so quickly.

To further test their findings the researchers carried out an experiment where they blocked the genetic switch from flipping, and the worm’s protective mechanisms remained strong.

Now, taking findings from something as small as a worm and trying to extrapolate them to larger animals is never easy. Nonetheless understanding what triggers aging in C. elegans could help us figure out if a similar process was taking place at the cellular level in people.

Morimoto says that knowledge might help us develop ways to improve our cellular quality of life and delay the onset of many of the diseases of aging:

“Wouldn’t it be better for society if people could be healthy and productive for a longer period during their lifetime? I am very interested in keeping the quality control systems optimal as long as we can, and now we have a target. Our findings suggest there should be a way to turn this genetic switch back on and protect our aging cells by increasing their ability to resist stress.”

The study is published in the journal Molecular Cell.

Sonic Hedgehog provides pathway to fight blood cancers

Dr. Catriona Jamieson: Photo courtesy Moores Cancer Center, UCSD

Dr. Catriona Jamieson:
Photo courtesy Moores Cancer Center, UCSD

For a lot of people Sonic Hedgehog is a video game. But for stem cell researcher Dr. Catriona Jamieson it is a signaling pathway in the body that offers a way to tackle and defeat some deadly blood cancers.

Dr. Jamieson – a researcher at the University of California, San Diego (UCSD) – has a paper published online today in The Lancet Haematology that highlights the safety and dosing levels for a new drug to treat a variety of blood cancers. CIRM funding helped Dr. Jamieson develop this work.

The drug targets cancer stem cells, the kind of cell that is believed to be able to lie dormant and evade anti-cancer therapies before springing back into action, causing a recurrence of the cancer. The drug coaxes the cancer stem cells out of their hiding space in the bone marrow and gets them to move into the blood stream where they can be destroyed by chemotherapy.

In a news release Dr. Jamieson says the drug – known by the catchy name of PF-04449913 – uses the sonic Hedgehog signaling pathway, an important regulator of the way we develop, to attack the cancer:

“This drug gets that unwanted house guest to leave and never come back. It’s a significant step forward in treating people with refractory or resistant myeloid leukemia, myelodysplastic syndrome and myelofibrosis. It’s a bonus that the drug can be administered as easily as an aspirin, in a single, daily oral tablet.”

The goal of this first-in-human study was to test the drug for safety; so 47 adults with blood and marrow cancer were given daily doses of the drug for up to 28 days. Those who were able to tolerate the dosage, without experiencing any serious side effects, were then given a higher dose for the next 28 days. Those who experienced problems were taken off the therapy.

Of the 47 people who started the trial in 2010, 28 experienced side effects. However, only three of those were severe. The drug showed signs of clinical activity – meaning it seemed to have an impact on the disease – in 23 people, almost half of those enrolled in the study.

Because of that initial promise it is now being tested in five different Phase 2 clinical trials. Dr. Jamieson says three of those trials are at UCSD:

“Our hope is that this drug will enable more effective treatment to begin earlier and that with earlier intervention, we can alter the course of disease and remove the need for, or improve the chances of success with, bone marrow transplantation. It’s all about reducing the burden of disease by intervening early.”

Improving process drives progress in stem cell research

shutterstock_212888935Process is not a sexy word. No one gets excited thinking about improving a process. Yet behind every great idea, behind every truly effective program is someone who figured out a way to improve the process, to make that idea not just work, but work better.

It’s not glamorous. Sometimes it’s not even pretty. But it is essential.

Yesterday in Oakland our governing Board approved two new concepts to improve our process, to help us fund research in a way that is faster, smarter and ultimately helps us better meet our mission of accelerating the development of stem cell therapies for patients with unmet medical needs.

The new concepts are for Discovery – the earliest stage of research – and the Translational phase, a critical step in moving promising therapies out of the lab and toward clinical trials where they can be tested in people.

In a news release C. Randal Mills, Ph.D., CIRM’s President and CEO, said that these additions built on the work started when the agency launched CIRM 2.0 in January for the clinical phase of research:

“What makes this approach different is that under CIRM 2.0 we are creating a pathway for research, from Discovery to Translational and Clinical, so that if a scientist is successful with their research at one level they are able to move that ahead into the next phase. We are not interested in research just for its own sake. We are interested in research that is going to help us help patients.”

In the Discovery program, for example, we will now be able to offer financial incentives to encourage researchers who successfully complete their work to move it along into the Translational phase – either themselves or by finding a scientific partner willing to take it up and move it forward.

This does a number of things. First it helps create a pipeline for the most promising projects so ideas that in the past might have stopped once the initial study ended now have a chance to move forward. Obviously our hope is that this forward movement will ultimately lead to a clinical trial. That won’t happen with every research program we fund but this approach will certainly increase the possibility that it might.

There’s another advantage too. By scheduling the Discovery and Translational awards more regularly we are creating a grant system that has more predictability, making it easier for researchers to know when they can apply for funding.

We estimate that each year there will be up to 50 Discovery awards worth a total of $53 million; 12 Translation awards worth a total of $40 million; and 12 clinical awards worth around $100 million. That’s a total of more than $190 million every year for research.

This has an important advantage for the stem cell agency too. We have close to $1 billion left in the bank so we want to make sure we spend it as wisely as we can.

As Jonathan Thomas, Ph.D. J.D, the Chair of our Board, said, having this kind of plan helps us better plan our financial future;

“Knowing how often these programs are going to be offered, and how much money is likely to be awarded means the Board has more information to work with in making decisions on where best to allocate our funding.”

The Board also renewed funding for both the Bridges and SPARK (formerly Creativity) programs. These are educational and training programs aimed at developing the next generation of stem cell scientists. The Bridges students are undergraduate or Master’s level students. The SPARK students are all still in high school. Many in both groups come from poor or low-income communities. This program gives them a chance to work in a world-class stem cell research facility and to think about a career in science, something that for many might have been unthinkable without Bridges or SPARK.

Process isn’t pretty. But for the students who can now think about becoming a scientist, for the researchers who can plan new studies, and for the patients who can now envision a potential therapy getting into clinical trials, that process can make all the difference.

CIRM Board meeting now underway – key votes expected on new CIRM 2.0 proposals and funding for disease research

The Board meeting is taking place at the Marriott in downtown Oakland. If you would like to hear the discussion there are a number of options:

Dial in Information:
Dial In Number: (866) 254-5938
Access Code: 365023

WebEx Link:
——————————————————-
To join the event as an attendee
——————————————————-
1. Go to https://cirm.webex.com/cirm/onstage/g.php?MTID=ee3fd12036ef7028c9f0596c3…
2. Click “Join Now”

We will have a full report on the meeting in Friday’s blog

2,000 year old drug could fight breast cancer

Aspirin: a new option for breast cancer?

Aspirin: a new option for breast cancer?

Aspirin has been around about as long as anyone has been writing about health. Hippocrates, who was born in 460 BC and is frequently referred to as “The Father of Western Medicine”, used willow bark and leaves – which contain the active ingredients found in aspirin – to help ease pain and fevers. Now a new study says it may also be able to help people battling breast cancer.

A study in the journal Laboratory Investigation looked at the ability of acetylsalicylic acid (the chemical name for aspirin) to block the replication of cancer stem cells in breast cancer. Cancer stem cells are thought to be able to evade chemotherapy or other anti-cancer therapies and help the disease spread or metastasize throughout the body.

Sushanta Banerjee and his team at the Cancer Research Unit at the Kansas City (Mo.) Veterans Affairs Medical Center isolated breast cancer cells and then exposed half of them to varying doses of aspirin. The cells exposed to aspirin either stopped growing or died.

Working in the lab is one thing, working in animals can be something completely different, so the researchers next took 20 mice that had aggressive breast tumors. Half were given the human equivalent of a “low dose” aspirin, half received nothing. After 15 days the mice on aspirin had tumors that were almost half the size of the tumors on the non-treated mice.

But the researchers still weren’t done. They also wanted to see if aspirin could help prevent the spread of the cancer in the first place. So they worked with another group of mice: half got aspirin for ten days, the other half got nothing. The entire group was then exposed to cancer cells. After 15 days the mice on aspirin had considerably less cancer than the untreated group.

Banerjee talked about the significance of their findings in an article in Drug Discovery & Development:

“Our studies, for the first time, showed that aspirin can block the self-renewal capacity of breast cancer stem cells, and growth of breast tumor-initiating cells (BTICs)/breast cancer stem cells (BCSCs), which are also considered breast cancer residual cells, under tissue culture conditions. In addition, we found that aspirin-pre-exposed cells delay the formation of a palpable tumor in a xenograft mice model.  These studies suggest aspirin can prevent disease relapse, and enhance long-term survival of breast cancer patients.”

The article does discuss some of the limitations of the study – such as the dose involved, the length of follow-up and our ability to extrapolate the findings to people. And of course because of the risk of internal bleeding it’s not recommended that people just start taking aspirin without first consulting their own doctor.

Even so, Ricardo Fodde, Ph.D. an Erasmus Medical Center expert on the use of aspirin to treat cancer, says the findings are important:

“I find the general idea of using aspirin in a cancer therapeutic setting quite exciting.” Aspirin is “an extremely cheap and relatively innocuous—at least when compared with conventional cytotoxic drugs—non-steroid anti-inflammatory drug (NSAID) that possibly targets what is nowadays regarded as the beating heart of the tumor mass: cancer stem cells.”

Last November we wrote about a study showing aspirin might also be useful in fighting colon cancer. You can read about that work here.

Pushing, pulling and dragging stem cell research forward

Government agencies are known for many things, but generally speaking a willingness to do some voluntary, deep self-examination is not one of them. However, for the last few weeks CIRM has been doing a lot of introspection as we develop a new Strategic Plan, a kind of road map for where we are heading.

Patient Advocate meeting in Los Angeles: Photo courtesy Cristy Lytal USC

Patient Advocate meeting in Los Angeles:
Photo courtesy Cristy Lytal USC

But we haven’t been alone. We’ve gone to San Diego, Los Angeles and San Francisco to talk to Patient Advocates in each city, to get their thoughts on what we need to focus on for the future. Why Patient Advocates? Because they are the ones with most skin in the game. They are why we do this work so it’s important they have a say in how we do it.

As Chris Stiehl, a Patient Advocate for type 1 diabetes, said in San Diego: “Let the patient be in the room, let them be part of the conversation about these therapies. They are the ones in need, so let them help make decisions about them right from the start, not at the end.”

A Strategic Plan is, on the surface, a pretty straightforward thing to put together. You look at where you are, identify where you want to go, and figure out the best way to get from here to there. But as with many things, what seems simple on the surface often turns out to be a lot more complicated when looked at in more depth.

The second bit, figuring out where you want to go, is easy. We want to live up to our mission of accelerating the development of stem cells therapies to patients with unmet medical needs. We don’t want to be good at this. We want to be great at this.

Dr. C. Randal Mills talking to Patient Advocates in LA: Photo courtesy Cristy Lytal, USC

Dr. C. Randal Mills talking to Patient Advocates in LA: Photo courtesy Cristy Lytal, USC

The first part, seeing where you are, is a little tougher: it involves what our President and CEO, Dr. Randy Mills, “confronting some brutal facts”, being really honest in assessing where you are because without that honesty you can’t achieve anything.

So where are we as an agency? Well, we have close to one billion dollars left in the bank, we have 12 projects in clinical trials and more on the way, we have helped advance stem cells from a fledgling field to a science on the brink of what we hope will be some remarkable treatments, and we have a remarkable team ready to help drive the field still further.

But how do we do that, how do we identify the third part of the puzzle, getting from where we are to where we want to be? CIRM 2.0 is part of the answer – developing a process to fund research that is easier, faster and more responsive to the needs of the scientists and companies developing new therapies. But that’s just part of the answer.

Some of the Patient Advocates asked if we considered focusing on just a few diseases, such as the ten largest killers of Americans, and devoting our remaining resources to fixing them. And the answer is yes, we looked at every single option. But we quickly decided against that because, as Randy Mills said:

“This is not a popularity contest, you can’t judge need by numbers, deciding the worth of something by how many people have it. We are disease agnostic. What we do is find the best science, and fund it.”

Another necessary element is developing better ways to attract greater investment from big pharmaceutical companies and venture capital to really help move the most promising projects through clinical trials and into patients. That is starting to happen, not as fast as we would like, but as our blog yesterday shows things are moving in this direction.

And the third piece of the pie is getting these treatments through the regulatory process, getting the Food and Drug Administration (FDA) to approve therapies for clinical trials. And this last piece clearly hit a nerve.

Many Patient Advocates expressed frustration at the slow pace of approval for any therapy by the FDA, some saying it felt like they just kept piling up obstacles in the way.

Dr. Mills said the FDA is caught between a rock and a hard place; criticized if it approves too slowly and chastised if it approves too fast, green lighting a therapy that later proves to have problems. But he agreed that changes are needed:

“The regulatory framework works well for things like drugs and small molecules that can be taken in pills but it doesn’t work well for cellular therapies like stem cells. It needs to do better at that.”

One Advocate suggested a Boot Camp for researchers, drilling them in the skills they’ll need to get FDA approval. Others suggested applying political pressure from Patient Advocacy groups to push for change.

As always there are no easy answers, but the meeting certainly raised many great questions. Those are all helping us focus our thinking on what needs to be in the Strategic Plan.

Randy ended the Patient Advocate events by saying the stem cell agency “is in the time business. What we do is time sensitive.” For too many people that time is already running out. We have to do everything we can to change that.

Partnering with Big Pharma to benefit patients

Our mission at CIRM is to accelerate the development of stem cell therapies for patients with unmet medical needs. One way we have been doing that is funding promising research to help it get through what’s called the “Valley of Death.” This is the time between a product or project showing promise and the time it shows that it actually works.

Many times the big pharmaceutical companies or deep pocketed investors, whose support is needed to cover the cost of clinical trials, don’t want to get involved until they see solid proof that this approach works. However, without that support the researchers can’t do the early stage clinical trials to get that proof.

The stem cell agency has been helping get these projects through this Catch 22 of medical research, giving them the support they need to get through the Valley of Death and emerge on the other side where Big Pharma is waiting, ready to take them from there.

We saw more evidence that Big Pharma is increasingly happy doing that this week with the news that the University of California, San Diego, is teaming up with GSK to develop a new approach to treating blood cancers.

Dr. Catriona Jamieson: Photo courtesy Moores Cancer Center, UCSD

Dr. Catriona Jamieson:
Photo courtesy Moores Cancer Center, UCSD

Dr. Catriona Jamieson is leading the UCSD team through her research that aims at killing the cancer stem cells that help tumors survive chemotherapy and other therapies, and then spread throughout the body again. This is work that we have helped fund.

In a story in The San Diego Union Tribune, reporter Brad Fikes says this is a big step forward:

“London-based GSK’s involvement marks a maturation of this aspect of Jamieson’s research from basic science to the early stages of discovering a drug candidate. Accelerating such research is a core purpose of CIRM, founded in 2004 to advance stem cell technology into disease therapies and diagnostics.”

The stem cell agency’s President and CEO, Dr. C. Randal Mills, is also quoted in the piece saying:

“This is great news for Dr. Jamieson and UCSD, but most importantly it is great news for patients. Academic-industry partnerships such as this bring to bear the considerable resources necessary to meaningfully confront healthcare’s biggest challenges. We have been strong supporters of Dr. Jamieson’s work for many years and I think this partnership not only reflects the progress that she has made, but just as importantly it reflects how the field as a whole has progressed.”

As the piece points out, academic researchers are very good at the science but are not always as good at turning the results of the research into a marketable product. That’s where having an industry partner helps. The companies have the experience turning promising therapies into approved treatments.

As Scott Lippman, director of the Moores Cancer Center at UCSD, said of the partnership:

“This is a wonderful example of academia-industry collaboration to accelerate drug development and clinical impact… and opens the door for cancer stem cell targeting from a completely new angle.”

With the cost of carrying out medical research and clinical trials rising it’s hard for scientists with limited funding to go it alone. That’s why these partnerships, with CIRM and industry, are so important. Working together we make it possible to speed up the development and testing of therapies, and get them to patients as quickly as possible.

Share your voice, shape our future

shutterstock_201440705There is power in a single voice. I am always reminded of that whenever I meet a patient advocate and hear them talk about the need for treatments and cures – and not just for their particular disease but for everyone.

The passion and commitment they display in advocating for more research funding reflects the fact that everyday, they live with the consequences of the lack of effective therapies. So as we at CIRM, think about the stem cell agency’s future and are putting together a new Strategic Plan to help shape the direction we take, it only makes sense for us to turn to the patient advocate community for their thoughts and ideas on what that future should look like.

That’s why we are setting up three meetings in the next ten days in San Diego, Los Angeles and San Francisco to give our patient advocates a chance to let us know what they think, in person.

We have already sent our key stakeholders a survey to get their thoughts on the general direction for the Strategic Plan, but there is a big difference between ticking a box and having a conversation. These upcoming meetings are a chance to talk together, to explore ideas and really flesh out the details of what this Strategic Plan could be and should be.

Our President and CEO, Dr. C. Randal Mills wants each of those meetings to be an opportunity to hear, first hand, what people would like to see as we enter our second decade. We have close to one billion dollars left to invest in research so there’s a lot at stake and this is a great chance for patient advocates to help shape our next five years.

Every voice counts, so join us and make sure that yours is heard.

The events are:

San Diego, Monday, July 13th at noon at Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037

Los Angeles: Tuesday, July 14th at noon at Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, 1425 San Pablo Street, 1st floor conf. room Los Angeles, CA 90033

San Francisco: Wednesday, July 15th at noon at CIRM, 210 King Street (3rd floor), San Francisco, CA 94107

There will be parking at each event and a light lunch will be served.

We hope to see you at one of them and if you do plan on coming please RSVP to info@cirm.ca.gov

And of course please feel free to share this invitation to anyone you think might be interested in having their voice heard. We all have a stake in this.

Creative partnerships that promote progress

Lewis and Clark: great partnerships can change the world

Lewis and Clark: great partnerships can change the world

Having a good partner can turn something good into something truly memorable. Where would Laurel be without Hardy, Lewis without Clark, Butch Cassidy without the Sundance Kid. That’s why the stem cell agency has partnerships on a number of different levels as part of our mission of accelerating the development of stem cell cures to patients with unmet medical needs.

Our latest partnership is with RegMedNet which, in its own words, “provides a unique and unparalleled platform for the regenerative medicine community to share insights, discuss the latest research, and help move the field forward.” With a goal like that why would we not want to support them?

Like us RegMedNet believes that regenerative medicine is going to completely change the way we treat disease, even the way we think about disease. They also believe that progress of the kind we all want is only going to come by bringing together all the key players from the researchers and manufacturers, to the government regulators and, of course, the patient advocates. Each has a vital role to play in moving the field forward and RegMedNet reflects that in both the content it posts online and in the contributors, who represent institutions and companies worldwide.

One of the most important elements in any partnership is understanding, and RegMedNet does a great job of trying to raise awareness about the field, the challenges we all face, and the progress being made. Bringing together so many different perspectives in one spot really helps create a much deeper understanding of regenerative medicine as a whole.

In a few short years regenerative medicine has gone from a relatively small field to a global industry. Our hope is that creating partnerships with like-minded groups around the world, is going to help it get even bigger and, even better.