Maintaining the momentum: a good start but CIRM 2.0 is just the first step

Sir Isaac Newton

Sir Isaac Newton

Newton’s First Law of Physics states that an object either remains at rest or continues to move at a constant velocity unless acted upon by an external force. Well, for the stem cell agency the external force was an exercise in thinking differently about how we do business. That resulted in our governing Board approving CIRM 2.0 yesterday. And we intend to keep that momentum going for as long as we can.

CIRM 2.0 is a streamlined process that will make it easier and faster to apply for funding from the stem cell agency, and is designed to attract high quality clinical stage projects that are ready to start within 45 days of being approved for funding.

As our President and CEO Dr. C. Randal Mills said in a news release:

“Our mission is to accelerate the development of stem cell treatments for patients with unmet medical needs. With many of these diseases, time lost waiting for a treatment means lives lost. We must continue to find new and innovative ways to speed up our process and make it easier to get promising therapies into clinical trials, and to give them all the support they need to be successful. That’s why we undertook this radical overhaul of the way we do business.”

In the past it could take up to two years for a researcher or company to move from applying for funding to getting the money as part of an approved contract. CIRM 2.0 simplifies and accelerates the process, cutting that two years down to just four months. And instead of just one single round of funding with an application deadline every 12-to-18 months, CIRM 2.0 will have an open application process for clinical stage programs with deadlines every month. That means companies and researchers can apply when they are ready and won’t have to try and rush an application in prematurely, for fear it could be another year or more before the chance comes around again.

It’s a big change in the way we work and as Dr. Mills told the Board at yesterday’s meeting, there are bound to be problems:

“There will be bumps in the road, you can’t make radical changes of this nature and scope without running into problems. I know that, my team knows that and we are ready to handle whatever unforeseen consequences come up.”

We plan on monitoring 2.0 as we unveil it, constantly checking to see what’s working and to fix what isn’t. In the short term we will use several measures of how well it’s working such as how many high quality applications we get, how quickly we can move these applications through the approvals process and how long it takes to get successful applicants their money. In the long term the best indication of success will be the quality of the programs we fund and how well they do in completing clinical trials.

This first phase of CIRM 2.0 will cover funding for clinical work but it will later be expanded to include discovery (also known as basic research) and translational research (moving promising discovery research to the clinic). But as Dr. Mills says, even while we are implementing CIRM 2.0 we are already thinking about the next step.

“Soon as this is done we have to start working on how we can improve CIRM 2.0 and keep that sense of urgency and innovation in front of us so that we always look to build a better product and fulfill our mission in a better way. Because there are many sick people out there looking to us for help and until that changes we need to be always looking to improve. Which is why as soon as CIRM 2.0 is done, we’re looking to create CIRM 3.0”

Stem cells and professional sports: a call for more science and less speculation

In the world of professional sports, teams invest tens of millions of dollars in players. Those players are under intense pressure to show a return on that investment for the team, and that means playing as hard as possible for as long as possible. So it’s no surprise that players facing serious injuries will often turn to any treatment that might get them back in the game.

image courtesy Scientific American

image courtesy Scientific American

A new study published last week in 2014 World Stem Cell Report (we blogged about it here) highlighted how far some players will go to keep playing, saying at least 12 NFL players have undergone unproven stem cell treatments in the last five years. A session at the recent World Stem Cell Summit in San Antonio, Texas showed that football is not unique, that this is a trend in all professional sports.

Dr. Shane Shapiro, an orthopedic surgeon at the Mayo Clinic, says it was an article in the New York Times in 2009 about two of the NFL players named in the World Stem Cell Report that led him to becoming interested in stem cells. The article focused on two members of the Pittsburgh Steelers team who were able to overcome injuries and play in the Super Bowl after undergoing stem cell treatment, although there was no direct evidence the stem cells caused the improvement.

“The next day, the day after the article appeared, I had multiple patients in my office with copies of the New York Times asking if I could perform the same procedure on them.”

Dr. Shapiro had experienced what has since become one of the driving factors behind many people seeking stem cell therapies, even ones that are unproven; the media reports high profile athletes getting a treatment that seems to work leading many non-athletes to want the same.

“This is not just about high profile athletes it’s also about older patients, weekend warriors and all those with degenerative joint disease, which affects around 50 million Americans. Currently for a lot of these degenerative conditions we don’t have many good non- surgical options, basically physical therapy, gentle pain relievers or steroid injections. That’s it. We have to get somewhere where we have options to slow down this trend, to slow down the progression of these injuries and problems.”

Shapiro says one of the most popular stem cell-based approaches in sports medicine today is the use of plasma rich platelets or PRP. The idea behind it makes sense, at least in theory. Blood contains platelets that contain growth factors that have been shown to help tissue heal. So injecting a patient’s platelets into the injury site might speed recovery and, because it’s the patient’s own platelets, the treatment probably won’t cause any immune response or prove to be harmful.

That’s the theory. The problem is few well-designed clinical trials have been done to see if that’s actually the case. Shapiro talked about one relatively small, non-randomized study that used PRP and in a 14-month follow-up found that 83% of patients reported feeling satisfied with their pain relief. However, 84% of this group did not have any visible improved appearance on ultrasound.

He is now in the process of carrying out a clinical trial, approved by the Food and Drug Administration (FDA), using bone marrow aspirate concentrate (BMAC) cells harvested from the patient’s own bone marrow. Because those cells secrete growth factors such as cytokines and chemokines they hope they may have anti-inflammatory and regenerative properties. The cells will be injected into 25 patients, all of whom have arthritic knees. They hope to have results next year.

Dr. Paul Saenz is a sports medicine specialist and the team physician for the San Antonio Spurs, the current National Basketball Association champions. He says that sports teams are frequently criticized for allowing players to undergo unproven stem cell treatments but he says it’s unrealistic to expect teams to do clinical studies to see if these therapies work, that’s not their area of expertise. But he also says team physicians are very careful in what they are willing to try.

“As fervent as we are to help bring an athlete back to form, we are equally fervent in our desire not to harm a $10 million athlete. Sports physicians are very conservative and for them stem cells are never the first thing they try, they are options when other approaches have failed.”

Saenz said while there are not enough double blind, randomized controlled clinical trials he has seen many individual cases, anecdotal evidence, where the use of stem cells has made a big difference. He talked about one basketball player, a 13-year NBA veteran, who was experiencing pain and mobility problems with his knee. He put the player on a biologic regimen and performed a PRP procedure on the knee.

“What we saw over the next few years was decreased pain, and a dramatic decrease in his reliance on non-steroidal anti inflammatory drugs. We saw improved MRI findings, improved athletic performance with more time on court, more baskets and more rebounds.”

But Saenz acknowledges that for the field to advance anecdotal stories like this are not enough, well-designed clinical trials are needed. He says right now there is too much guesswork in treatments, that there is not even any agreement on best practices or standardized treatment protocols.

Dr. Shapiro says for too long the use of stem cells in sports medicine has been the realm of individual physicians or medical groups. That has to change:

“If we are ever to move forward on this it has to be opened up to the scientific community, we have to do the work, do the studies, complete the analysis, open it up to our peers, report it in a reputable journal. If we want to treat the 50 million Americans who need this kind of therapy we need to go through the FDA approval process. We can’t just continue to treat the one patient a month who can afford to pay for all this themselves. “

How partnering with someone half way around the world could help develop new treatments here in California

Much as we love California, and we really do, even we have to admit that genius knows no boundaries and that great scientific research is taking place all over the world. As our goal as an agency is to accelerate the development of successful therapies for people in need it only makes sense that we would try and tap into that genius, wherever it is, in whatever way we can. That’s where our Collaborative Funding Partnership (CFP) program comes in.

Michel Hivert, Executive Director at MATIMOP (L) and ICOC Chairman Jonathan Thomas

Michel Hivert, Executive Director at MATIMOP (L) and ICOC Chairman Jonathan Thomas

Under Proposition 71, the voter-approved initiative that created the stem cell agency, all the research we fund has to be in California. But that doesn’t mean we can’t help create collaborations between researchers here – that we fund – and researchers in other parts of the world who get funding from other sources. And we do just that. In fact we now have 24 CFPs stretching from New York state to Brazil, Japan, the UK and Australia.

And now we have added two more. One with Poland two weeks ago  and today, with Israel. As the Chair of our governing Board, Jonathan Thomas said in a news release , the goal of these agreements is simple, to advance stem cell research around the world:

“Israel has long had a robust stem cell research community. Through this newly announced collaboration, we hope to generate partnerships between Israeli and California scientists that build on our complementary strengths and generate joint research projects that will benefit patients everywhere.”

Dr. Andy David, Consul General of Israel to the Pacific North West, echoed those sentiments:

“It represents a practical expression of shared interests that is unusual for its depth and range. Israel and California are on opposite corners of the globe geographically, but they are practically coming closer every day. The reason for this thriving relationship is the understanding that we are strong mutual assets.”

But nice as these partnerships are the only questions that really matter are do these collaborations really make a difference; do they really help increase the likelihood of a successful therapy? The answer from our experience is yes. For example, a team we are funding at Stanford is collaborating with a team from the Medical Research Council in the UK, focused on solid tumor cancers. The Stanford team has been given approval by the Food and Drug Administration (FDA) to run a clinical trial testing this approach on solid tumors, while the UK team is using the same approach to tackling acute myeloid leukemia (AML) an often-fatal cancer of the blood and bone marrow. Knowledge gained from one trial may well benefit the other and could ultimately lead to approaches to treating other solid tumor cancers such as breast, ovarian, bladder and colon.

Disease does not stop at the border and we see no reason for our engagement with the best science, and the best scientists, to stop there either. Our goal is to find cures, and we’ll go wherever we have to and work with whoever we can to meet that goal.

 

 

 

 

Truth or Consequences: how to spot a liar and what to do once you catch them

Nothing undermines the credibility of science and scientists more than the retraction a high profile paper. Earlier this year there was a prime example of that when researchers at one of Japan’s most prestigious research institutions, the Riken Center for Developmental Biology in Kobe, had to retract a study that had gathered worldwide attention. The study, about a new method for creating embryonic-like stem cells called stimulus triggered acquisition of pluripotency or STAP, was discredited after it was discovered that the lead author had falsified data.

Publication retractions have increased dramatically in recent years [Credit: PMRetract]

Publication retractions have increased dramatically in recent years [Credit: PMRetract]

The STAP incident drew international coverage and condemnation and raised the question, how common is this and what can be done to combat it? A panel discussion at the World Stem Cell Summit in San Antonio, Texas entitled “Reproducibility and rigor in research: What have we learned from the STAP debacle” tackled the subject head on.

Ivan Oransky, medical journalist and the co-founder of the website Retraction Watch posed the question “Does stem cell research have a retraction problem?” He says:

“The answer to my question is yes. But so does everyone else. All of science has a retraction problem, not just stem cells.”

Oransky says the number of retractions has doubled from 2001 to 2010. One author has retracted 183 times – the record so far – but to break into the top 5 you need to have at least 50 retractions. These come from all over the world from the US to Germany and Japan and most recently Azerbaijan.

Oransky says part of the problem is the system itself. Getting your research results published is critical to advancing a career in science and those kinds of pressures force people to cut corners, take risks or even just falsify data and manipulate images in order to get a paper into a high profile journal. In most cases, journals charge a fee of several hundred to thousands of dollars to publish studies, so they have no incentive to dig too deeply into findings looking for flaws, as it might undermine their own business model.

“Some authors, more than 100, have been caught reviewing their own papers. When the journal they were submitting their paper to asked for the names of recommended reviewers they would submit the names of people who are legitimate reviewers in the field but instead of giving real email addresses they would give fake email addresses, ones they controlled so they could submit their own reviews under someone else’s name.”

What gave them away is that all the potential “reviewers” didn’t first reply and say “yes, I’ll review”, instead they responded by sending back a full review of the paper, raising suspicions and ultimately to detection.

Graham Parker, a researcher at Wayne State University School of Medicine and the editor of Stem Cell and Development says spotting the problem is not always easy:

“As an editor I regard scientific misconduct as fabrication, falsification or plagiarism of data but there are lots of other areas where it’s not always so clear – there are often shades of gray”

He says researchers may make an honest mistake, or include duplicative images and in those cases should be allowed to fix the problems without any stigma attached. But when serious cases of falsification of data are uncovered they can have a big impact by retarding scientific progress and sapping public confidence in the field as a whole.

Jeanne Loring, a stem cell scientist at The Scripps Research Institute and a recipient of funding from CIRM, says the STAP incident was actually a sign of progress in this area. Ten years ago when a Korean researcher named Hwang Woo-Suk claimed to have cloned human embryos it took more than a year before he was found to have falsified the data. But in the STAP case it took a little over a week for other researchers to start raising red flags:

“One of the real heroes in this story is Paul Knoepfler (a CIRM-funded researcher at UC Davis) who takes on difficult issues in his blog. It took Paul just 8 days to post a request for people to crowdsource this study, asking people who were trying to replicate the findings to report their results – and they did, showing they failed over and over again”

Parker said it’s getting easier for editors and others in the field to double check data in studies. For example new software programs allow him to quickly check submitted manuscripts for plagiarism. And he says there is a growing number of people who enjoy looking for problems.

“Nowadays it’s so easy for people to dig very deeply into papers and check up on every aspect of it, from the content to the methodology to the images they use and whether those images were in any way manipulated to create a false impression. Once they find a problem with one paper they’ll dig back through papers in that scientist’s past to see if they can find other problems dating back years that were never found at the time.”

He says that in most cases researchers caught falsifying data or deliberately misleading journals faced few consequences:

“Often the consequences of misconduct are very mild, the equivalent of a slap on the wrist, which does not discourage others from trying to do the same.”

Each panel member says that tougher penalties are needed. For example, in extreme cases a threat of criminal action could be warranted, if the falsified research could lead to serious consequences for patients.

But the panel ended on an encouraging note. Oransky says, for example, that medical journals are now paying more attention and imposing stricter rules and he says there’s even scientific evidence that “doing the right thing might pay off.”

“One study recently showed that if you made an honest error and corrected it publicly not only does the stigma of retraction not apply to you, you don’t get a decrease in your citations—you actually get an increase. So we’d like to think that doing the right thing is a good thing and might actually be a positive thing.”

Taking Promising Therapies out of the Lab and into People: Tips from Experts at the World Stem Cell Summit on How to Succeed

Having a great idea for a stem cell therapy is the easy part. Getting it to work in the lab is tougher. But sometimes the toughest part of all is getting it out of the lab and into clinical trials in patients. That’s natural and sensible, after all we need to make sure that something seems safe before even trying it in people. But how do you overcome all the challenges you face along the way? That was the topic of one of the panel discussions at the World Stem Cell Summit in San Antonio, Texas.

Rick Blume is the Managing Director at Excel Venture Management, and someone with decades of experience in investing in healthcare companies. He says researchers face numerous hurdles in trying to move even the most promising therapies through the approval and regulatory process, only some of which are medical. Blume says:

“Great ideas can become great companies. And good Venture Capitalists (VCs) can help with that process, but the researchers have to overcome technical, funding and logistical hurdles before VCs are usually ready to move in and help.”

Of course that’s where agencies and organizations like CIRM come in. We help fund the early stage research, helping researchers overcome those hurdles and getting promising therapies to a point where VCs and other large investors are willing to step in.

Left to right: Geoff Crouse CEO of Cord Blood Registry, C. Randal Mills, President and CEO of CIRM, Rick Blume of Excel Venture Management and Anthony Atala of Wake Forest University Medical Center

Left to right: Geoff Crouse CEO of Cord Blood Registry, C. Randal Mills, President and CEO of CIRM, Rick Blume of Excel Venture Management and Anthony Atala of Wake Forest University Medical Center

Geoff Crouse, the CEO of the Cord Blood Registry, says researchers need to be increasingly imaginative when looking for funding these days.

“While Federal funding for this kind of research is drying up, there are alternatives such as CIRM and philanthropic investors who are not just seeking to make active investments but are also trying to change the world, so they offer alternatives to more traditional sources of funding. You have to look broadly at your funding opportunities and see what you want to do.”

C. Randal Mills, the President and CEO of CIRM said too many people get caught up looking at the number of challenges that any project faces when it starts out:

“The single most important thing that you need to do is to show that the treatment works in people with unmet medical needs, that it is safe. If you can do that, all the other problems, the cost of the therapy, how to market it, how to get reimbursed for it, those will all be resolved in time. But first you have to make it work, then you can make it work better and more efficiently.”

The panel all agreed that one of the areas that needs attention is the approval and regulatory process saying the Food and Drug Administration (FDA) the regulatory body governing this field, needs to adjust its basic “one size fits all” paradigm.”

Mills says the FDA is in a difficult position:

“Everyone wants three things; they want fast drugs, they want cheap drugs and they want perfect drugs. The problem is you can’t have all three. You can have two but not all three and that puts the FDA into an almost impossible position because if therapies aren’t approved quickly they are criticized but if they are approved and later show problems then the FDA is criticized again.”

Often the easiest way to get a traditional drug therapy approved for use is to ask for a “humanitarian exemption”, particularly for an orphan disease that has a relatively small number of people suffering from it and no alternative therapies. But when it comes to more complex products knows as biologics, which includes stem cell therapies, this humanitarian exemption does not exist making approval much harder to obtain, slowing down the field.

Mills says other countries, such as Japan, have made adjustments to the way they regulate new therapies such as stem cells and he hopes the FDA will learn from that and make similar modifications to the way they see these therapies.

All three panelists were optimistic that the field is making good progress, and will continue to advance. Good news for the many patient advocates attending the World Stem Cell Summit who are waiting for treatments for themselves or loved ones.

Tune into Famelab: “American Idol” for scientists and engineers

I sometimes joke that I consider myself and my communications colleagues the “official translators” at the stem cell agency, trying to turn complex science into everyday English. After all, the public is paying for the research that we fund and they have a right to know about the progress being made, in language they can understand.

famelab

That’s why events like Famelab are so important. Famelab is like American Idol for scientists. It’s a competition to find scientists and engineers with a flair for public communication, and to help them talk about their work to everyone, not just to their colleagues and peers. Famelab gives these scientists and engineers support, encouragement and training them to find their voices, and to put those voices to use wherever and whenever they can; in the media, in public presentations, even just in everyday conversations.

Kathy Culpin works with the British Council to promote Famelab here in the US. She says it’s vitally important for scientists to be able to talk about their work:

“At the British Council we have worked with people who are doing amazing things but they can’t communicate to a broader audience. If scientists, particularly younger scientists, are unable to communicate effectively and clearly in a way that people want to listen to, in a way that people can understand, how are they going to have public support for their work, how are they even going to be able to raise funds for their work?”

The premise behind Famelab is simple: young up-and-coming scientists have just three minutes to present their research to a panel of three judges. They can’t use any slides or charts. Nothing. All they have is the power of their voice and whatever prop they can hold in their hands. For many scientists, taking away their PowerPoint presentation is like asking them to walk a tight rope without a safety net. It’s uncomfortable territory. And yet many respond magnificently.

Here’s Lyl Tomlinson, the winner of the most recent U.S. event, competing in the international finals. Appropriately enough Lyl’s presentation was on the role of running and stem cells in improving memory.

Famelab began in England but has now spread to 19 other countries. The competition starts at the regional level before progressing on to the national finals (April 2016) and then the international competition (June 2016, at the Cheltenham Science Festival in the UK).

In the U.S. there are a number of regional heats (you can find out by going here)

NASA helps run Famelab in the U.S. Daniella Scalice, the Education and Public Outreach Lead for the Astrobiology program at the agency, says Famelab is fun, but it has a serious side to it as well:

“We feel strongly that good communications skills are essential to a scientist’s training, especially for a Federal agency like NASA where we have a responsibility to the taxpayers to ensure they understand what their hard-earned dollars are paying for.  With FameLab, we hope to make learning best practices in communications easy and fun, and provide a safe environment for young scientists to get some experience communicating and meet other like-minded scientists.”

The next event in the U.S. is here in San Francisco on Monday, December 15 at the Rickshaw Stop at 155 Fell Street. Doors open at 6.30pm, competition starts at 7:30 P.

What is most fun about Famelab is that you never really know what to expect. One person will talk about the lifespan of the wood frog, the next will discuss the latest trends on social media. One thing is certain. It is always entertaining. And informative. And engaging. And isn’t that what science is supposed to be!

If you want to see how my colleagues and I at the stem cell agency tried to get stem cell scientists to develop sharper communication skills check out our Elevator Pitch Challenge.

Using stem cells paves new approach to treating a blistering skin disease

Imagine a child not being able to run or jump or just roll around, for fear that any movement could strip away their skin and leave them with open, painful wounds. That’s what life is like for children with a nasty genetic disease called epidermolysis bullosa or EB. The slightest touch can cause their skin to peel off. People with the disease often die in their late teens or early 20’s from skin cancer, caused by repeated cycles of skin wounding and healing.

Now Stanford researchers, funded by the stem cell agency, have found a way to correct the faulty gene and grow healthy skin, a technique that could completely change the lives of children with EB. This new approach, which the researchers call “therapeutic reprogramming”, is reported in the journal Science Translational Medicine

In the study the researchers took skin cells from patients with EB and reprogrammed them to become induced pluripotent stem (iPS) cells that have the ability to become any of the other cells in the body. They then replaced the faulty gene that caused that particular form of EB and then turned the cells into keratinocytes, the cells that make up most of our outer layer of skin. When they grafted these cells onto the back of laboratory mice they grew into normal human skin.

In a news release about the work, Dr. Anthony Oro, one of the senior authors of the paper, says the work represents a completely different approach to treating EB.

“Normally, treatment has been confined to surgical approaches to repair damaged skin, or medical approaches to prevent and repair damage. But by replacing the faulty gene with a correct version in stem cells, and then converting those corrected stem cells to keratinocytes, we have the possibility of achieving a permanent fix — replacing damaged areas with healthy, perfectly matched skin grafts.”

One of the key words in that quote is “healthy”. Because the skin cells that they got from the patient probably already included some that had a skin cancer-causing mutation, the researchers carefully screened the cells to make sure they removed any that looked suspicious.

Oro says tests showed the resulting skin from these iPS cells was very similar to human skin made from normal keratinocytes.

“The most difficult part of this procedure is to show not just that you can make keratinocytes from the corrected stem cells, but that you can then use them to make graftable skin. What we’d love to do is to be able to give patients healthy skin grafts on the areas that they bang a lot, such as hands and feet and elbows — those places that don’t heal well. That alone would significantly improve our patients’ lives. We don’t know how long these grafts might last in humans; we may need some improvements. But I think we’re getting very close.”

Having seen that this works in mice the team are now eager to see if they can replicate their results in people. With CIRM support they have already been working with the Food and Drug Administration (FDA) to pave the way for that to happen. Dr. Marius Wernig, one of the senior authors of the paper, says that focus on patients is driving their work:

“CIRM made sure that we were always keeping in mind the need to translate our results to the clinic. Now we’ve shown that this approach that we call ‘therapeutic reprogramming’ works well with human cells. We can indeed take skin cells from people with epidermolysis bullosa, convert them to iPS cells, replace the faulty collagen 7 gene with a new copy, and then finally convert these cells to keratinocytes to generate human skin. It is almost like a fountain of youth that, in principle, produces an endless supply of new, healthy skin from a patient’s own cells.”

Taking stock: ten years of the stem cell agency, progress and promise for the future

Under some circumstances ten years can seem like a lifetime. But when lives are at stake, ten years can fly by in a flash.

Ten years ago the people of California created the stem cell agency when they overwhelmingly approved Proposition 71, giving us $3 billion to fund and support stem cell research in the state.

In 2004 stem cell science held enormous potential but the field was still quite young. Back then the biology of the cells was not well understood, and our ability to convert stem cells into other cell types for potential therapies was limited. Today, less than 8 years after we actually started funding research, we have ten projects that are expected to be approved for clinical trials by the end of the year, including work in heart disease and cancer, HIV/AIDS and diabetes. So clearly great progress has been made.

Dean Carmen Puliafito and the panel at the Tenth Anniversary event at USC

Dean Carmen Puliafito and the panel at the Tenth Anniversary event at USC

Yesterday we held an event at the University of Southern California (USC) to mark those ten years, to chart where we have come from, and to look to where we are going. It was a gathering of all those who have, as they say, skin in the game: researchers, patients and patient advocates.

The event was held at the Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research. As Dr. Carmen Puliafito, Dean of USC’s Keck School of Medicine noted, without CIRM the building would not even exist.

“With this funding, our researchers, and researchers in 11 other facilities throughout the state, gained a dedicated space to hunt for cures for some of the most pernicious diseases in the world, including heart disease, stroke, cancer, diabetes, Alzheimer’s and Parkinson’s disease.”

Dr. Dhruv Sareen from Cedars-Sinai praised CIRM for creating a whole new industry in the state:

“What Silicon Valley has done for technology, CIRM is doing for stem cell research in California.”

One of the beneficiaries of that new industry has been ViaCyte, a San Diego-based company that is now in clinical trials with a small implantable device containing stem cell-derived cells to treat type 1 diabetes. ViaCyte’s Dr. Eugene Brandon said without CIRM none of that would have been possible.

“In 2008 it was extremely hard for a small biotech company to get funding for the kind of work we were doing. Without that support, without that funding from CIRM, I don’t know where this work would be today.”

As with everything we do, at the heart of it are the patients. Fred Lesikar says when he had a massive heart attack and woke up in the hospital his nurse told him about a measure they use to determine the scale of the attack. When he asked how big his attack had been, she replied, “I’ve never seen numbers that large before. Ever.”

Fred told of leaving the hospital a diminished person, unable to do most basic things because his heart had been so badly damaged. But after getting a stem cell-based therapy using his own heart cells he is now as active as ever, something he says doesn’t just affect him.

“It’s not just patients who benefit from these treatments, families do too. It changes the life of the patient, and the lives of all those around them. I feel like I’m back to normal and I’m so grateful for CIRM and Cedars-Sinai for helping me get here.”

The team behind that approach, based at Cedars-Sinai, is now in a much larger clinical trial and we are funding it.

The last word in the event was left to Bob Klein, who led the drive to get Proposition 71 passed and who was the agency’s first Chair. He said looking at what has happened in the last ten years: “it is beyond what I could have imagined.”

Bob noted that the field has not been without its challenges and problems to overcome, and that more challenges and problems almost certainly lie in the future:

“But the genius of the people of this state is reflected in their commitment to this cause, and we should all be eternally grateful for their vision in supporting research that will save and transform people’s lives.”

Ten at ten at the stem cell agency: sharing the good news about progress from the bench to the bedside

Ten years ago this month the voters of California overwhelmingly approved Proposition 71, creating the state’s stem cell agency, the California Institute for Regenerative Medicine, and providing $3 billion to fund stem cell research in California.

That money has helped make California a global leader in stem cell research and led to ten clinical trials that the stem cell agency is funding this year alone. Those include trials in heart disease, cancer, leukemia, diabetes, blindness, HIV/AIDS and sickle cell disease.

To hear how that work has had an impact on the lives of patients we are holding a media briefing to look at the tremendous progress that has been made, and to hear what the future holds.

When: Thursday, November 20th at 11am

Where: Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at the University of Southern California, 1425 San Pablo Street, Los Angeles, CA 90033

Who: Hear from patients who have benefited from stem cell therapies, the researchers who have done the work, and the key figures in the drive to make California the global leader in stem cell research

To listen in to the event by phone:

Call in: 866.528.2256  Participant code: 1594399

For more information contact: Kevin McCormack, Communications Director, CIRM kmccormack@cirm.ca.gov

Cell: 415-361-2903

Spinal cord injury and stem cell research; find out the latest in a Google Hangout

Spinal cord injuries are devastating, leaving the person injured facing a life time of challenges, and placing a huge strain on their family and loved ones who help care for them.

The numbers affected are not small. More than a quarter of a million Americans are living with spinal cord injuries and there are more than 11,000 new cases each year.

It’s not just a devastating injury, it’s also an expensive one. According to the National Spinal Cord Injury Statistical Center it can cost more than $775,000 to care for a patient in the first year after injury, and the estimated lifetime costs due to spinal cord injury can be as high as $3 million.

Right now there is no cure, and treatment options are very limited. We have heard for several years now about stem cell research aimed at helping people with spinal cord injuries, but where is that research and how close are we to testing the most promising approaches in people?

That’s going to be the focus of a Google Hangout on Spinal Cord Injury and Stem Cell Research that we are hosting tomorrow, Tuesday, November 18 from noon till 1pm PST.

We’ll be looking at the latest stem cell-based treatments for spinal cord injury including work being done by Asterias Biotherapeutics, which was recently given approval by the Food and Drug Administration (FDA) to start a clinical trial for spinal cord injury. We are giving Asterias $14.3 million to carry out that trial and you can read more about that work here.

We’re fortunate in having three great guests for the Hangout: Jane Lebkowski, Ph.D., the President of research and development at Asterias; Roman Reed, a patient advocate and tireless champion of stem cell research and the founder of the Roman Reed Foundation; and Kevin Whittlesey, Ph.D., a CIRM science officer, who will discuss other CIRM-funded research that aims to better understand spinal cord injury and to bring stem cell-based therapies to clinic trials.

You can find out how to join the Hangout by clicking on the event page link: http://bit.ly/1sh1Dsm

The event is free and interactive, so you’ll be able to ask questions of our experts. You don’t need a Google+ account to watch the Hangout – just visit the event page at the specified time. If you do have a G+ account, please RSVP at the event page (link shown above). Also, with the G+ account you can ask questions in the comment box on this event page. Otherwise, you can tweet questions using #AskCIRMSCI or email us at info@cirm.ca.gov.

We look forward to seeing you there!