Getting the right tools for the right job

Imagine a device that sits outside the body and works like a form of dialysis for a damaged liver, filtering out the toxins and giving the liver a chance to regenerate, and the patient a chance to avoid the need for a transplant.

Or imagine a method of enhancing the number of stem cells we can harvest or generate from umbilical cord blood, enabling us to use those stem cells and offer life-saving bone marrow transplants to all the patients who don’t have a matched donor.

Well, you may not have to imagine for too long. Yesterday, our governing Board approved almost $30 million in funding for our Tools and Technology Awards and two of the successful applications are for researchers hoping to turn those two ideas into reality.

The Tools n Tech awards may not have the glamor or cache of the big money awards that are developing treatments heading towards clinical trials, but they are nonetheless an essential part of what we do.

As our Board Chair Jonathan Thomas said in a news release they focus on developing new approaches or creating new ways of overcoming some of the biggest obstacles in stem cell research.

“Sometimes even the most promising therapy can be derailed by a tiny problem. These awards are designed to help find ways to overcome those problems, to bridge the gaps in our knowledge and ensure that the best research is able to keep progressing and move out of the lab and into clinical trials in patients.”

Altogether 20 awards were funded for a wide variety of different ideas and projects. Some focus on improving our ability to manufacture the kinds of cells we need for transplanting into patients. Another one plans to use a new class of genetic engineering tools to re-engineer the kind of stem cells found in bone marrow, making them resistant to HIV/AIDS. They also hope this method could ultimately be used to directly target the stem cells while they are inside the body, rather than taking the cells out and performing the same procedure in a lab and later transplanting them back.

Dr. Kent Leach, UC Davis School of Engineering

Dr. Kent Leach, UC Davis School of Engineering

One of the winners was Dr. Kent Leach from the University of California, Davis School of Engineering. He’s looking to make a new kind of imaging probe, one that uses light and sound to measure the strength and durability of bone and cartilage created by stem cells. This could eliminate the need for biopsies to make the same measurements, which is good news for patients and might also help reduce healthcare costs.

We featured Dr. Leach in one of our Spotlight videos where he talks about using stem cells to help repair broken bones that no longer respond to traditional methods.

What…exactly…do you do? How 12 year olds helped me learn how to talk about science

Jackie Ward in her lab at UC San Diego

Jackie Ward in her lab at UC San Diego

Jackie Ward is a graduate student at the University of California, San Diego (UCSD), and received a training grant from CIRM while studying for her PhD. At UCSD Jackie uses stem cells as a model to study rare neurodegenerative diseases in the lab of Albert La Spada. Her work as a PhD student focuses on a rare form of inherited neurodegeneration called spinocerebellar ataxia. From time to time Jackie shares her experiences with us. Here’s her latest.

One of the many questions I get over my annual trek home during the holidays is “What…exactly…do you do?” This is usually couched somewhere between “have you learned to surf yet?” and “how’s the weather?” In the past, I preferred to talk about my surfing skills (very minimal) and the sunshine (always amazing, thanks San Diego), more than what I do every day. It’s amazing how this seemingly innocuous question can be the most difficult to answer. Because we’re used to presenting our work in lecture formats or lengthy scientific papers, summing it up in three sentences of non-jargon can be difficult. A similar thought was outlined recently at UCSD, by the actor and science advocate Alan Alda. The title of his presentation, “Getting the Public Past a Blind Date with Science,” highlighted the uncomfortable feelings many people have towards science. Like any relationship, sustained communication and trust is necessary for success. Unfortunately, on many scientific issues, that relationship has suffered. As a PhD student, I am constantly surrounded by my peers—other scientists who know exactly what I mean when I use terms like “reprogramming” or “retinal photoreceptor.” While these scientist-to-scientist conversations are vital to our work, we often forget that it is equally, or perhaps more, important to have conversations with people who have no idea what we do. As any CIRM- or NIH-funded lab is well aware, a significant portion of our funding comes from taxpayer dollars. It’s these “investors” to whom we ultimately report back. This conversation is challenging. Not only do we have to change our language, we have to remember what it was like to not know everything we do now. The best practice I’ve gotten in this regard is talking to kids. Seventh graders seem to be less afraid to ask you questions or call you out on something that doesn’t make sense to them. (Now that I think about it, it might be beneficial to include some 13-year-olds on our grant review panels.) My graduate program allows students to fulfill their teaching requirement by doing science outreach activities. I chose to do this with the Salk Institute’s mobile science lab, where real scientists are connected to local middle schools to discuss their jobs and lead hands-on science labs. I didn’t realize how valuable this experience was until it started to become easier for me to answer the “what do you do” question. I changed the words I use. I replaced the word “reprogram” with “rewind” and “retinal photoreceptor” with “eye cell.” Unexpectedly, I think this practice helped me become a better communicator when I talk to other scientists now too. I try not to assume a certain level of knowledge with anybody. While I still love talking about pretending to surf and gloating about the weather, I’ve become more fond of the “what do you do” question. I hope to only improve with time. It’ll be my small contribution for getting science to that second date.

Strong ARMing regenerative medicine; bold thoughts on a bright future

It’s a time-honored tradition for the President of the United States to begin his State of the Union speech by saying “The state of our union is strong.” Well, Ed Lanphier, the incoming Chairman of the Alliance for Regenerative Medicine (ARM) – the industry trade group – took a leaf out of that book in kicking off the annual “State of the Industry Briefing” in San Francisco yesterday. He said the state of the industry is not just strong, but getting stronger all the time.

ARM_State_of_the_Industry_Briefing_2015_And he had the facts to back him up. In monetary terms alone he said the regenerative medicine field raised $6.3 billion in 2014, compared to $2.3 billion in 2013.

He pointed to the growing number of partnerships and alliances between big pharmaceutical businesses and smaller biotech and cell therapy companies as a sign that deep pocket investors recognize the potential in the field, saying “Big Pharma sees the value of these outcomes and the maturation of these pipelines.”

Lanphier also highlighted the more than 375 clinical trials that were underway last year, and the fact that more than 60 regenerative medicine products have been approved.

But he also pointed out that the field as a whole faces some big challenges in the coming years. One of the most pressing could be pricing. He cited criticisms that exploded over medicines like Gilead’s hepatitis C treatment Sovaldi because of its $1,000-a-day price tag. Lanphier warned that regenerative medicine could face similar criticisms when some of its therapies are finally approved, because they are likely to be very expensive (at least to start with). He said we need to start thinking now how to talk to patients and the public in general about this, so they understand why these treatments are so expensive, but may be cheaper in the long run if they cure rather than just treat disease.

As if to reinforce that message the first panel discussion in the briefing focused on the gene therapy and genome-editing field. Panel members talked about the high expectations for this field in the 1990’s but that it took decades of work before we finally started to see those early hopes turn into reality.

Jeffrey Walsh, the COO of bluebird bio talked about: “The excitement about gene therapy in the early days… and then having to survive the 15-20 years after that in the very challenging days for gene therapy.”

Katrine Bosley, the CEO of Editas Medicine, says those challenges have not gone away and that the field will have to address some big issues in the future. Among those are working with regulatory agencies such as the Food and Drug Administration (FDA) to win approval for completely new ways of treating disease. Another is anticipating the kinds of ethical issues they will have to address in using these techniques to alter genes.

Questions about the regulatory process also popped up in the second panel, which focused more on advanced therapy and drug development. Paul Laikind of ViaCyte (whose clinical trial in type 1 diabetes we are funding) highlighted those challenges saying: “Making the cells the way you want is not rocket science; but doing it in a way that meets regulatory requirements is rocket science.”

Paul Wotton, the President and CEO of Ocata Therapeutics (formerly called ACT) echoed those sentiments:

“We are pioneering things here and it’s the pioneers who often end up with arrows in their back, so you really have to spend a lot of time working with the FDA and other regulatory bodies to make sure you are having all the right conversations ahead of time.”

But while everyone freely acknowledged there are challenging times ahead, the mood was still very positive, perhaps best summed up by C. Randal Mills, the President of CEO of CIRM and moderator of the panel, when he said:

“I find it remarkable where we are in this space today – with this number of cutting edge companies in clinical trials. Stem cell therapy is becoming a reality, it’s no longer a place where only a foolish few dare to go in; it’s a reality. There is a change in the practice of medicine that is coming and we are all fortunate to be a part of it.”

CIRM 2.0: A New Year, a new start, a new way to advance research

It’s tradition to begin the New Year by making a resolution. Wikipedia has a wonderful description of what this involves saying it is where “a person makes a promise to do an act of self-improvement or something slightly nice, such as opening doors for people beginning from New Year’s Day.”

CIRM2.0_Logo

Well, by that criteria, CIRM 2.0 is a perfect way for us to start 2015 because it is both an act of self-improvement and something “slightly nice” (love that phrase).

2.0, for those of you who haven’t been following us, is a rather dramatic overhaul of the way we do business. It’s about streamlining the way we work in a way that places added emphasis on speed, partnerships and patients.

CIRM 2.0 makes it easier for both companies and academic researchers with promising projects to partner with CIRM to get the support they need when they need it, reducing the time from application to funding from around two years to just 120 days – that’s the “self-improvement”.

In a news release marking the launch of 2.0, our President and CEO Randy Mills summed up the reason why we are making these changes:

“Our mission is to accelerate the development of stem cell therapies for patients with unmet medical needs. Today, in officially launching the first three programs under CIRM 2.0, we have boldly reaffirmed our commitment to continuously seek new and innovative ways to better serve that mission.”

Simply put, we hope that by improving the way we work we can help speed up the development of treatments for patients in need. I would say that more than qualifies as being “slightly nice.”

You can hear Randy talking about CIRM 2.0 here

This is just the first phase of our new look. In December our governing Board gave us $50 million to get this up and running for clinical stage work over the next six months (you can find links to the Program Announcements for that work on our news release). Later this year we are going to expand 2.0 to include both discovery – or basic – research and translational research.

We are now in our 11th year as an agency funding stem cell research. Last year was a big year for us with 8 projects we are funding approved for clinical trials. But as we see every New Year, getting a little older shouldn’t stop you from wanting to improve or making the next year or years even better. Or from just doing something “slightly nice” for others.

Peering inside the brain: how stem cells could help turn skin into therapies for dementia

To truly understand a disease you need to be able to see how it works, how it causes our body to act in ways that it shouldn’t. In cancer, for example, you can take cells from a tumor and observe them under a microscope to see what is going on. But with diseases of the brain it’s much harder. You can’t just open someone’s skull to grab some cells to study. However, now we have new tools that enable us to skip the skull-opening bit, and examine brain cells in people with diseases like dementia, to see what’s going wrong, and maybe even to get some ideas on how to make it right.

AF_neuronTHMito(2)_webThe latest example of this comes from researchers in Belgium who have developed a new strategy for treating patients with an inherited form of dementia. They used the induced pluripotent stem cell (iPSC) method, taking take skin cells from patients with frontotemporal dementia, and turning them into neurons, the kind of brain cell damaged by the disease. They were then able to study those neurons for clues as to what was happening inside the brain.

The study is reported in the journal Stem Cell Reports, and in an accompanying news release the senior author, Catherine Verfaillie, says this approach allows them to study problems in the brain in ways that weren’t possible before.

“iPSC models can now be used to better understand dementia, and in particular frontotemporal dementia, and might lead to the development of drugs that can curtail or slow down the degeneration of cortical neurons.”

The researchers identified problems with a particular signaling pathway in the brain, Wnt, which plays an important role in the development of neurons. In patients with frontotemporal dementia, the neurons weren’t able to mature into cortical neurons, which play a key role in enabling thought, perception and voluntary movement. However, by genetically correcting that problem they were able to restore the ability of the neurons to turn into cortical neurons.

Philip Van Damme, a lead researcher on the project, says this may open up possible ways to treat the problem.

“Our findings suggest that signaling events required for neurodevelopment may also play major roles in neurodegeneration. Targeting such pathways, as for instance the Wnt pathway presented in this study, may result in the creation of novel therapeutic approaches for frontotemporal dementia.”

How stem cells made the list of scientific breakthroughs of 2014 (twice actually)

This is the time of year when everyone puts out their lists of the best and worst of the last 12 months. The best movies (”Guardians of the Galaxy”, “The Grand Budapest Hotel”) the worst movies (“Guardians of the Galaxy”, “The Grand Budapest Hotel” – it’s all a matter of taste really) the best music etc. You get the picture.

Science imagesSo it’s always fun to see what makes the list of the “biggest scientific breakthroughs” of 2014. I put those in quotations because I always get a little nervous using the word “breakthrough” when talking about stem cells; what seems like a breakthrough one year, could prove out to be a dud the next. Or, worse still, a fake – see yesterday’s blog. But when Science magazine uses the word as part of its article: ‘Breakthrough of the Year: The top 10 scientific achievements of 2014’, I think it has a shot at being accurate.

The list is compiled by the editors of Science, to highlight what they call “a singular scientific achievement”. I’ll tell you what they chose as the winner in a moment, but there are two stem cell stories that were listed as runners-up.

Giving new life to old mice; cartoon courtesy of

Giving new life to old mice; cartoon courtesy of

The first story was about a trio of studies that showed how giving older mice the blood of younger mice can help rejuvenate them in surprising ways, including improving muscle and brain function. We blogged about this work when it came out in May. It’s already being tested to see if it might work in people, with 18 Alzheimer’s patients getting injections of plasma donated by young adults, to see if that can help slow down or halt the progression of the disease.

The second story was about work turning embryonic stem (ES) cells into mature beta cells, the kind of cells found in our pancreas that help produce insulin. These are also the cells that are destroyed in type 1 diabetes. This year researchers found a way to turn ES cells into mass quantities of beta cells, a critical first step in developing a therapy for type 1 diabetes. The next step is to find a way to protect those cells from the same autoimmune reaction that killed the beta cells in the first place.

What’s particular interesting about this work – at least from our perspective – is that we are funding a clinical trial run by ViaCyte that uses this same approach, and has the cells encapsulated in a special device to protect them from the immune system.

Getting two stem cell stories on the list of the biggest scientific stories of the year is no mean achievement, and a sign of the progress the field is making. We’re hoping that 2015 sees even more stem cell stories making positive news headlines.

As for the story named the “Breakthrough of the Year”, it was the ten-year mission that ended with the landing of a spacecraft on a comet 326 million miles away from earth. Coming second to that kind of astonishing achievement is no disgrace.

A look at 2014: some of the lowlights of stem cell research this past year

It’s been quite a year in stem cell research. Here at the stem cell agency eight projects that we are funding have been approved for clinical trials and several more hope to get approval in early 2015. And Dr. Don Kohn and his team at UCLA announced that they have effectively cured Severe Combined Immunodeficiency or SCID  a fatal disease that leaves infants with no immune system.

But the news hasn’t been all good. A number of high profile retractions of studies published in prestigious journals have drawn attention to some of the less lovely aspects of science. There are many reasons why a researcher or scientific journal decides to retract a study – falsified data, inability of others to reproduce the findings etc. – but the end result is always the same, a stain on the reputation of science in general.

Of course the only thing worse than a retraction is bad science that is not retracted. That’s why websites such as Retraction Watch are so important. They keep an eye on the field and help draw attention to questionable papers (in all areas of science, not just stem cell research).

Ivan Oransky of Retraction Watch

Ivan Oransky of Retraction Watch

The two founders of the site, Evan Marcus and Ivan Oransky, do a remarkable job of highlighting work that doesn’t stand up to closer scrutiny. This year they worked with the magazine Science to highlight The Top 10 Retractions of 2014.  Sadly, two of the top 10 – including the number one story of the year – concern stem cell research.

The list is a reminder, as we look forward to 2015 for more progress in the field, that we need to always check the credibility of studies or sources we are using. Sometimes something that seems too good to be true, is too good to be true.

Tomorrow, we’ll take a look at the flip side of this discussion, the “Biggest Scientific Breakthroughs of 2014”. It’s always good to end the year on a positive note.

A Christmas miracle or untested therapy? Why even feel-good stem cell stories need to be checked for accuracy

We’ve written several pieces over the last couple of years about the trend for professional athletes to turn to untested and/or unproven stem cell therapies to help them bounce back from injuries. This week, however, came news of something a little more worrying. Ice hockey legend Gordie Howe was given stem cells to help him recover from a series of debilitating strokes. As is often the case with these stories it’s not just the nature of the treatment that raises questions, it’s also the way the media has covered it.

Gordie Howe - photo courtesy Sean Hagen from Maple Ridge, Canada

Gordie Howe – photo courtesy Sean Hagen from Maple Ridge, Canada

The facts are pretty straightforward. Howe’s strokes left him “essentially bedridden with little ability to eat or communicate on his own”, according to a statement issued by his family. Two companies – Stemedica and Novastem – then “volunteered” their services, delivering a stem cell therapy to Howe. According to the family “The response was truly miraculous.”

And that was often the extent of the digging that dozens of media outlets that reported the news did. They reported the facts of the stroke, and then just reprinted the statement from the family without questioning what kinds of cells, how they might work, etc etc. They didn’t bother to interview other stem cell scientists about this kind of approach to see if it was something that might benefit other stroke patients. They didn’t even take a closer look at the two companies involved to see what their track record on this kind of research is.

In short, it’s clearly a feel-good story about a sports legend and no one wanted to be the one to say, “hey, wait a minute here, how do we know this is real.”

No one, except Dr. Paul Knoepfler. Paul, as regular readers of this blog know, is a CIRM-funded stem cell researcher at the University of California, Davis and an avid blogger. In a post on his blog he took a much closer look at the story, posed some thoughtful questions and raised some doubts about it. He also reached out to Stemedica who, to their credit, responded promptly to his questions. You can read what they had to say here.

Paul, like the rest of us, would love to be able to say that this kind of approach worked for Gordie Howe and could work for millions of others left disabled by strokes. But Paul, unlike many news outlets that reported the story, isn’t willing to just accept it on face value.

There’s an old adage in journalism: “If your mother tells you she loves you, check to see if it’s true.” It basically means don’t accept anything on face value; dig a little deeper to see if it’s really true. Paul is doing that, and doing it very well. Other journalists might do well to follow his lead.

Maintaining the momentum: a good start but CIRM 2.0 is just the first step

Sir Isaac Newton

Sir Isaac Newton

Newton’s First Law of Physics states that an object either remains at rest or continues to move at a constant velocity unless acted upon by an external force. Well, for the stem cell agency the external force was an exercise in thinking differently about how we do business. That resulted in our governing Board approving CIRM 2.0 yesterday. And we intend to keep that momentum going for as long as we can.

CIRM 2.0 is a streamlined process that will make it easier and faster to apply for funding from the stem cell agency, and is designed to attract high quality clinical stage projects that are ready to start within 45 days of being approved for funding.

As our President and CEO Dr. C. Randal Mills said in a news release:

“Our mission is to accelerate the development of stem cell treatments for patients with unmet medical needs. With many of these diseases, time lost waiting for a treatment means lives lost. We must continue to find new and innovative ways to speed up our process and make it easier to get promising therapies into clinical trials, and to give them all the support they need to be successful. That’s why we undertook this radical overhaul of the way we do business.”

In the past it could take up to two years for a researcher or company to move from applying for funding to getting the money as part of an approved contract. CIRM 2.0 simplifies and accelerates the process, cutting that two years down to just four months. And instead of just one single round of funding with an application deadline every 12-to-18 months, CIRM 2.0 will have an open application process for clinical stage programs with deadlines every month. That means companies and researchers can apply when they are ready and won’t have to try and rush an application in prematurely, for fear it could be another year or more before the chance comes around again.

It’s a big change in the way we work and as Dr. Mills told the Board at yesterday’s meeting, there are bound to be problems:

“There will be bumps in the road, you can’t make radical changes of this nature and scope without running into problems. I know that, my team knows that and we are ready to handle whatever unforeseen consequences come up.”

We plan on monitoring 2.0 as we unveil it, constantly checking to see what’s working and to fix what isn’t. In the short term we will use several measures of how well it’s working such as how many high quality applications we get, how quickly we can move these applications through the approvals process and how long it takes to get successful applicants their money. In the long term the best indication of success will be the quality of the programs we fund and how well they do in completing clinical trials.

This first phase of CIRM 2.0 will cover funding for clinical work but it will later be expanded to include discovery (also known as basic research) and translational research (moving promising discovery research to the clinic). But as Dr. Mills says, even while we are implementing CIRM 2.0 we are already thinking about the next step.

“Soon as this is done we have to start working on how we can improve CIRM 2.0 and keep that sense of urgency and innovation in front of us so that we always look to build a better product and fulfill our mission in a better way. Because there are many sick people out there looking to us for help and until that changes we need to be always looking to improve. Which is why as soon as CIRM 2.0 is done, we’re looking to create CIRM 3.0”

Stem cells and professional sports: a call for more science and less speculation

In the world of professional sports, teams invest tens of millions of dollars in players. Those players are under intense pressure to show a return on that investment for the team, and that means playing as hard as possible for as long as possible. So it’s no surprise that players facing serious injuries will often turn to any treatment that might get them back in the game.

image courtesy Scientific American

image courtesy Scientific American

A new study published last week in 2014 World Stem Cell Report (we blogged about it here) highlighted how far some players will go to keep playing, saying at least 12 NFL players have undergone unproven stem cell treatments in the last five years. A session at the recent World Stem Cell Summit in San Antonio, Texas showed that football is not unique, that this is a trend in all professional sports.

Dr. Shane Shapiro, an orthopedic surgeon at the Mayo Clinic, says it was an article in the New York Times in 2009 about two of the NFL players named in the World Stem Cell Report that led him to becoming interested in stem cells. The article focused on two members of the Pittsburgh Steelers team who were able to overcome injuries and play in the Super Bowl after undergoing stem cell treatment, although there was no direct evidence the stem cells caused the improvement.

“The next day, the day after the article appeared, I had multiple patients in my office with copies of the New York Times asking if I could perform the same procedure on them.”

Dr. Shapiro had experienced what has since become one of the driving factors behind many people seeking stem cell therapies, even ones that are unproven; the media reports high profile athletes getting a treatment that seems to work leading many non-athletes to want the same.

“This is not just about high profile athletes it’s also about older patients, weekend warriors and all those with degenerative joint disease, which affects around 50 million Americans. Currently for a lot of these degenerative conditions we don’t have many good non- surgical options, basically physical therapy, gentle pain relievers or steroid injections. That’s it. We have to get somewhere where we have options to slow down this trend, to slow down the progression of these injuries and problems.”

Shapiro says one of the most popular stem cell-based approaches in sports medicine today is the use of plasma rich platelets or PRP. The idea behind it makes sense, at least in theory. Blood contains platelets that contain growth factors that have been shown to help tissue heal. So injecting a patient’s platelets into the injury site might speed recovery and, because it’s the patient’s own platelets, the treatment probably won’t cause any immune response or prove to be harmful.

That’s the theory. The problem is few well-designed clinical trials have been done to see if that’s actually the case. Shapiro talked about one relatively small, non-randomized study that used PRP and in a 14-month follow-up found that 83% of patients reported feeling satisfied with their pain relief. However, 84% of this group did not have any visible improved appearance on ultrasound.

He is now in the process of carrying out a clinical trial, approved by the Food and Drug Administration (FDA), using bone marrow aspirate concentrate (BMAC) cells harvested from the patient’s own bone marrow. Because those cells secrete growth factors such as cytokines and chemokines they hope they may have anti-inflammatory and regenerative properties. The cells will be injected into 25 patients, all of whom have arthritic knees. They hope to have results next year.

Dr. Paul Saenz is a sports medicine specialist and the team physician for the San Antonio Spurs, the current National Basketball Association champions. He says that sports teams are frequently criticized for allowing players to undergo unproven stem cell treatments but he says it’s unrealistic to expect teams to do clinical studies to see if these therapies work, that’s not their area of expertise. But he also says team physicians are very careful in what they are willing to try.

“As fervent as we are to help bring an athlete back to form, we are equally fervent in our desire not to harm a $10 million athlete. Sports physicians are very conservative and for them stem cells are never the first thing they try, they are options when other approaches have failed.”

Saenz said while there are not enough double blind, randomized controlled clinical trials he has seen many individual cases, anecdotal evidence, where the use of stem cells has made a big difference. He talked about one basketball player, a 13-year NBA veteran, who was experiencing pain and mobility problems with his knee. He put the player on a biologic regimen and performed a PRP procedure on the knee.

“What we saw over the next few years was decreased pain, and a dramatic decrease in his reliance on non-steroidal anti inflammatory drugs. We saw improved MRI findings, improved athletic performance with more time on court, more baskets and more rebounds.”

But Saenz acknowledges that for the field to advance anecdotal stories like this are not enough, well-designed clinical trials are needed. He says right now there is too much guesswork in treatments, that there is not even any agreement on best practices or standardized treatment protocols.

Dr. Shapiro says for too long the use of stem cells in sports medicine has been the realm of individual physicians or medical groups. That has to change:

“If we are ever to move forward on this it has to be opened up to the scientific community, we have to do the work, do the studies, complete the analysis, open it up to our peers, report it in a reputable journal. If we want to treat the 50 million Americans who need this kind of therapy we need to go through the FDA approval process. We can’t just continue to treat the one patient a month who can afford to pay for all this themselves. “