Building a Blueprint for the Human Brain

How does a brain blossom from a small cluster of cells into nature’s most powerful supercomputer? The answer has long puzzled scientists, but with new advances in stem cell biology, researchers are quickly mapping the complex suite of connections that together make up the brain.

UCLA scientists have developed a new system that can map the development of brain cells.

UCLA scientists have developed a new system that can map the development of brain cells.

One of the latest breakthroughs comes from Dr. Daniel Geschwind and his team at the University of California, Los Angeles (UCLA), who have found a way to track precisely how early-stage brain cells are formed. These findings, published recently in the journal Neuron, shed important light on what had long been considered one of biology’s black boxes—how a brain becomes a brain.

Along with co-lead authors and UCLA postdoctoral fellows Drs. Luis de la Torre-Ubieta and Jason Stein, Geschwind developed a new system that measures key data points along the lifetime of a cell, as it matures from an embryonic stem cell into a functioning brain cell, or neuron. These new data points, such as when certain genes are switched on and off, then allow the team to map how the developing human fetus constructs a functioning brain.

Geschwind is particularly excited about how this new information can help inform how complex neurological conditions—such as autism—can develop. As he stated in a news release:

“These new techniques offer extraordinary promise in the study of autism, because we now have an unbiased and genome-wide view of how genes are used in the development of the disease, like a fingerprint. Our goal is to develop new treatments for autism, and this discovery can provide the basis for improved high-efficiency screening methods and open up an enormous new realm of therapeutic possibilities that didn’t exist before.”

This research, which was funded in part by a training grant from CIRM, stands to improve the way that scientists model disease in a dish—one of the most useful applications of stem cell biology. To that end, the research team has developed a program called CoNTEXT that can identify the maturity levels of cells in a dish. They’ve made this program freely available to researchers, in the hopes that others can benefit. Said de la Torre-Ubieta:

“Our hope is that the scientific community will be able to use this particular program to create the best protocols and refine their methods.”

Want to learn more about how stem cell scientists study disease in a dish? Check out our pilot episode of “Stem Cells in your Face.”